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ABSTRACT

School of Graduate Studies

The University of Alabama in Huntsville

Degree Ph. D. College/Dept

Name of Candidate Andrew Howard Resnick

Science/Physics

Title: An Experimental Investigation of the Static Equilibria and Dynamics of Liquid

Bridges

A liquid bridge is a volume of liquid held between two or more solid supports. In

the case of small disk supports with a sharp edge, the contact line between the bridge and

the support disk will be anchored along the edge of the disk. For these cases the solid

presents a geometrical singularity and the contact angle is indeterminate within a given

range. This dissertation presents research conducted on liquid bridges with anchored

contact lines. The three major topics covered are: determining the role of support geometry

on static equilibria, liquid bridge dynamical behavior, and forces exterted by a liquid bridge

on a support structure. The work was primarily experimental and conducted in a "Plateau

tank" that allowed for the simulation of equivalent low-gravity conditions. The main thrust

of the experimental work involved the use of a high resolution optical measurement system

for imaging the dynamic zone shape, measurement of the static and dynamic contact angles

and non-invasive analysis of excited surface modes. The liquid bridge was manipulated by

computer controlled linear actuators which allowed precise control over the physical

characteristics of the bridge.

Experiments have been carried out to locate a bifurcation point along the maximum

volume axisymmetric stability margin. Below the critical slenderness the bifurcation from

an axisymmetric to a stable nonaxisymmetric configuration is supercritical. However,

above this critical slenderness, the bifurcation is subcritical.

iv



A series of experiments analyzed the effect on axisymmetric bridge stability by

using support disks of different radii. The shape behavior as transition points were

approached, as well as the limiting case of a vanishing support radius was investigated.

Experiments were performed to determine the resonant frequencies of

axisymmetric bridges subject to lateral vibrations. Anomolous results led to a series of

experiments to characterize nonlinearities present in the dynamic bridge shape.

Finally, an attempt was made to experimentally measure the force exerted by the

bridge on the lower support disk. This was done through use of a force balance apparatus.

Particular attention was paid to the behavior of the bridge as the minimum volume stability

limit was approached.
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Chapter 1

INTRODUCTION

1.1 Introduction and background

A liquid bridge, or captive drop, is a mass of liquid held by surface tension between

two or more solid supports (see Figure 1.1). Liquid bridges occur in a variety of physical

and technological situations and a great deal of theoretical and experimental work has been

done to determine axisymmetric equilibria for various disk configurations, bridge

slendemess and rotations.

(a) (b)

///

JS

'//,\

'/s
///,

(c)

//.

/

(d) \ (e)

Figure 1.1. Equilibrium configurations of liquid bridges between solid supports. In (a)
and (b) surfaces anchored to sharp disk edges are shown. In (c), (d), and (e) the contact

angle takes on its equilibrium value Oe.

There have also been numerous investigations of the dynamics of axisymmetric

liquid bridges subject to different excitations (impulses, vibration, etc.). Some preliminary

work has been performed on nonaxisymmetric bridge stability, forces exerted by

1
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axisymmetric bridges,and dielectric liquid bridges. Orr et al. [1] cite a number of

applications of the results of liquid bridge research. For example, volume is essential for

calculations of water saturation [2] and connate water estimates in oil and gas reservoirs

[3]. Capillary condensation and evaporation problems in porous media require knowledge

of bridge curvatures [4,5]. Forces exerted by liquid bridges on solids are important in

powder metallurgy during liquid phase sintering [6], in powder wetting problems [7], the

deformation of moist porous and unconsolidated granular media [8,9], and in adhesion

problems [ 10]. Liquid bridges and drops are also important factors when considering the

positioning of liquid masses using surface tension forces and propellant management in

liquid fuel tanks [ 11]. More recent applications of liquid bridges include the floating zone

method of crystal growth [12-14]. Liquid bridge oscillation and decay properties can also

be used for viscosity and surface tension measurements of molten materials at high

temperatures [ 15]. Pendular liquid bridges occur widely in the powder technology industry

and are a major influence on powder flow process and mechanical properties [16]. In

porous media flow, liquid-liquid displacement can lead to evolution of pendant and sessile

lobes or lenticular bridges. The formation of liquid bridges from the gel that coats lung

micro-airways results in occlusion of the bronchioles and is a precursor to respiratory

problems and lung collapse [ 17-19].

Although liquid bridges have many technological applications, they are also

interesting from a basic science point of view. Axisymmetric bridges, essentially a one-

dimensional physical system, can display a very rich and complex behavior. The

experiments described in chapter 4 have been well documented previously, and were

performed here primarily to test and calibrate system performance. The results of chapter

5 represent part of an ongoing study at the Center for Microgravity and Materials Research

(CMMR) to analyze multiparametric stability of liquid bridges. In addition to verification

of numerical calculations, a new method was found to measure the interfacial energy

between isopycnic imiscible fluids, and the behavior of a bridge in the limit of a vanishing
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lower disksupportradiuswasobserved.Theresultsof experimentsdescribedin chapter6

indicatethat to properlymodellaterallyoscillateddynamicliquid bridgebehavior,a full

non-lineartreatmentof thesystemis necessary.Thishasdirectapplicationto modelsof

crystalgrowth in a g-jitter environment.In addition,anewmethodwasusedto visualize

the spatialmodesof anoscillating liquid bridge in real-time. Finally, the experiments

describedin chapter7 shedinsight into thebehaviorof a bridgeasthe minimum volume

stabilitylimit is approached.Thisexperimentalapparatuscouldbeusedto probethin film

staticsanddynamics,aswell asotherdynamicfluid processessuchasdropcoalescence.

Using rigid sharp-edgeddisk supports,the bridgecanbe positionedso that the

contact line betweentheliquid andthesolid disk is anchoredat theedgeof thedisk. For

thesecaseswherethe solid presentssucha geometricalsingularity, the contactangleis

indeterminatewithin a given range,andthe contactline remainsanchoredto the edge.

Supportswithout sharpedges,suchasspheresor largeflat plates,will allow the fluid to

attainanequilibrium contactangle. This will persistprovidedthe contactline doesnot

move. However,sincethecontactline is notanchored,vibrationsor othermotion of the

supportcan result in motion of thecontact line in order to accommodatecontactangle

changesasthebridgedeforms. Most theoreticalandexperimentalwork dealswith liquid

bridgeswith apinnedcontactline. SlobozhaninandTyuptsov[20], andlaterDyson[21]

showedthat for a bridgeanchoredto a sharpedge,thecontactangle_ canvary freely

_)e < _b< _)e + g - _ where 5 is the acute angle defined by the sharp edgewithin the range

(see Figure 1.2).

J
J

J
J

iquid 2

Figure 1.2. Contact angle _ at a sharp edge: Oe < _ < n -_+ Oe
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This pinning or anchoring of the contact line is sometimes referred to as canthotaxis

[22,23] and allows the bridge to admit a wider range of stable configurations than would be

possible if the contact angle was restricted to be the equilibrium angle (as it would be for a

flat or some other smooth surface). Other types of supports have been considered,

including flat plates [24-29] plates and spheres [30] and spheres [16, 31-33].

The shapes and stability of liquid bridges are governed by the following

dimensionless numbers (see Figure 1.3)

Z

_1 _ R2 -- /_

_4"///////////// /////////////_ _

////////////////

R1 --I

I

Figure 1.3. Equilibrium configuration of an axisymmetric liquid bridge. The gravity

vector points toward the smaller disk if g > 0, and towards the larger disk if g < 0.

Bo = ApR2g/7 - Bond number

V = V0/rtR2L - relative volume

A = L/2R = slenderness



We = ApR3F22/],

_)1, 02

K = Rt/R2

13 =d/R

- Weber number

-=lower and upper external contact angles

- lower and upper internal contact angles = 180 - 13

- ratio of disk radii

=- ratio of disk rotation rates

- relative disk offset

Here Ap is the density difference between the bridge and the surrounding fluid, R is

the characteristic length associated with the bridge (usually the average radius of the

supporting disks), g is the gravitational acceleration, 7 is the surface energy or interfacial

tension (see section 2.2.), L is the distance between the disks, d is the lateral offset between

disk centers and f2 is the average angular rotation rate of the disks. Bo is a measure of the

ratio of buoyancy to surface tension forces. The Weber number represents a balance

between centripetal and surface tension forces.

For cases where the effective static and dynamic Bond numbers are small, the

resulting dynamics of a bridge may differ considerably from the dynamics of bridges at

large Bo. The roles of support geometry and contact angle dynamics in determining liquid

bridge stability at low Bond numbers are investigated in this dissertation. The work was

primarily experimental and was conducted in a "Plateau tank" to simulate low-gravity

conditions. The main thrust of the experimental work involved the use of an high

resolution Fourier optical measurement system for imaging the dynamic bridge shape,

measurement of the static and dynamic contact angles and non-invasive analysis of excited

surface modes. The liquid bridge supports were moved by computer controlled linear

actuators. This allowed precise control of several physical characteristics of the bridge,

specifically the volume and the slenderness, as well as vertical, lateral and rotational

vibration rates. Other experimental approaches included the replacement of the lower
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supportdisk with athin diskattachedto acantileverarmto measuretheforceexertedby a

bridgeon thelower supportdisk.

The key conceptin thepresentapproachto imagingthe bridge is the conceptof

optically frequencyfiltering theilluminating light, or apodization.Theability to perform

imagemanipulationsthroughalterationson theFourierplanebeganwith experimentsby

Abbe [34] and Porter [35]. However,the initial useof Fourier methodsto alter optical

imagesdatefrom experimentsby MarEchal[36] andMarquet[37],motivatedby Duffieux

[38]. Methodsof Fourieranalysistechniquesappliedto electrical signalsand networks

quickly becameappliedto optical systems[39-42]. The developmentand useof spatial

filters to alteropticalimages,primarily to eliminategrainingandaberrationsfollowed [43-

47]. It wasalsorealizedthat optical manipulationsof theFourier transformationof an

optical scenecan correspondto what are otherwise time-consuming mathematical

operations[48,49].

The Plateauor neutralbuoyancymethod[22] reliesupontheprinciple that if two

imiscible liquids of equaldensityareconfiguredsuchthatoneenvelopstheotherthenthe

curvatureof the equilibrium interfaceis aconstant.That is, despitethe fact that gravity

createsa hydrostaticpressuregradientin eachliquid, theinterfacebetweenthetwo liquids

behavesas if the gravitational accelerationis zero. For non-zerogravity, the density

mismatchcanbeadjustedto coverarangeof Bondnumbers.In eachliquid thepressure

Pi, i=1,2,satisfies

or

Vpi = -pigez (1.1a)

Vpi -- 0 (1.1 b)

where Pi = Pi + pigz, and Pi is the density of the i th liquid phase. At the interface between

the two fluids



P*I - P*2 -- (P I-P2)gz + 27J. (1.2)

Here J is the mean curvature of the surface, fluid 1 is the inner (bridge) fluid, and

fluid 2 is the outer (bath) fluid. When p ! and 92 are equal, the curvature is a constant, and

zero-gravity conditions are obtained. Thus, the outer fluid compensates for the hydrostatic

pressure gradient along the interface. To obtain a non-zero Bo, the outer bath density can

be changed either by adjusting the composition or temperature [50].

Several scientific requirements had to be met to ensure accurate and precise

results. The primary requirement is to produce accurate and stable Bond numbers over the

range 10 -1 _>Bo _> 10 -4. This range is given by practical density differences between the

bridge and bath liquids for the upper bound and measurement precision for the lower

bound. This implies control over bath temperature, bath composition, and an accurate

method to determine the densities and interfacial energies of the bridge and bath over

various temperatures. Lower Bond numbers can also be obtained by using support disks

with a smaller radius. The experimental observations include recording the static interface

shape and dynamic contact angle behavior during dynamic processes. Features on the

order of tens of microns must be viewed with light that passes through distorting media.

Precise control of vibration frequency, amplitude, and direction of the support disks are

also necessary. Frequencies range from tenths of Hertz up to a few Hertz, and vibration

amplitudes from a fraction of a millimeter to a centimeter. During vibration or rotation,

the disk supports must remain parallel, and not exhibit runout or wobble. They must also

be easily accessible and replaceable, and the tank should be easy to clean. The bridge and

bath fluids must be mutually imiscible, and neither should chemically react with the

support disks. The experimental apparatus meets all of these requirements.
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1.2 Summary of previous research on liquid bridges, contact angles and

interfacial energies

1.2.1 Liquid bridges

Since the early days of research into the effects of low gravity on physical

phenomena much attention has been focused on the equilibria and dynamics of liquid

bridges and columns held between coaxial circular disks [ 15, 24-29, 51-134]. There has

been a great deal of theoretical work to determine axisymmetric equilibria for various disk

configurations, bridge slenderness and rotations [51-94]. The dynamics of axisymmetric

liquid bridges subject to different excitations (impulses, vibration etc.) [95-133] has also

been studied in some detail. There has been an equally healthy record of experimental

work on the ground [51-57, 60-62, 113-116, 132], in sounding rockets [67-70] and in

orbiting spacecraft [58, 59, 63-66].

Ground based studies have been made using the Plateau or neutral buoyancy

method [51-54, 56-57, 60-62, 113, 115, 116] to simulate microgravity conditions. Small

scale (millimetric) bridges have also been used to avoid gravitational effects [54]. The

Plateau method involves surrounding a liquid bridge with a liquid which has the same

density but with which it is imiscible. The effect of gravity can then be effectively

examined by changing the Bond number. This is done by changing the density difference

between the bridge and the surrounding fluid. While these methods produce useful results,

they are limited either by the small zone size [22], or the presence of an outer fluid which

limits the application of the results [22, 60, 134, 135].

1.2.1.1 Liquid column shapes and stability limits

Axisymmetric bridges held between coaxial and unequal disks have been studied

extensively and are well documented. The shape of a liquid surface can be determined

theoretically from the Gauss-Laplace equation [ 136] that represents a balance between the

pressure difference across the surface and the capillary pressure (the product of the surface
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tensionandthemeancurvature).For axisymmetricbridgesthevolume-,gravity-,rotation-

andslenderness-dependenciesof thestabilitylimits of thefamily of surfacesthatcanexist

betweentwo circulardiskshavebeenexaminedtheoreticallyandexperimentally[52-61].

A summaryof all possibleliquid shapesbetweenequaland unequaldisks is found in

references[84, 94]. Orr et al. [30] developed expressions for shapes of bridges between a

sphere and a parallel plate for Bo = 0. These expressions can be readily extended to

bridges between parallel plates.

For zero-gravity conditions, the equilibrium surface is a surface of constant mean

curvature and, for the axisymmetric case, the bridge can have a cylindrical, spherical,

catenoidal, unduloidal or nodoidal shapes. Typically, previous investigations of weightless

bridge stability have assumed that the perturbations satisfy the constraints of constant liquid

volume and fixed contact lines. Our experimental techniques, described in chapter 3,

satisfies these constraints. We were concerned with the behavior of the bridge as it loses

stability. We investigated the nature of the bridge shape near specific bifurcation and

transition points that occur on the axisymmetric stability boundary. Previous work is

summarized below.

Rayleigh [137] showed that a right circular cylindrical liquid jet will break up if its

length exceeds its circumference. This stability limit is also observed by cylindrical liquid

bridges contained between coaxial discs at zero Bond number. It has been established

theoretically [138] and experimentally [52, 138] that a cylindrical bridge is stable if the

slenderness A < rt and unstable if A > n. Here the critical perturbation is axisymmetric

[137, 138]. It was suggested by Gillette & Dyson [76] that, when the relative volume

V = 1, there are no stable non-cylindrical axisymmetric surfaces. Rivas & Meseguer

[ 108] determined the linear dependence of A on V for critical unduloids that are close to a

cylinder. Constant volume spherical bridges are always stable. This follows from

Plateau's experimental results and is easily proved theoretically (see, for example,

references [80, 136]). Plateau [138] determined the region of existence for catenoidal
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bridges experimentally. A theoretical and experimental analysis of the stability of

catenoidal bridges with respect to axisymmetric perturbations was later carried out by Erie.

Gillette & Dyson [95]. Besides cylinders, spheres and catenoids, Plateau [138] also

undertook experimental investigations of the stability of unduloidal and nodoidal bridge

surfaces and qualitatively described the results. For axisymmetric perturbations and

arbitrary values of A and V, the stability limits were first constructed by Gillette & Dyson

[76] on the basis of Howe's theory [139] (outlined in [76, 95, 140]). They also proved that

an axisymmetric bridge with no equatorial symmetry plane is always unstable.

Furthermore, they later proved [140] that axisymmetric perturbations are the most

dangerous for weightless bridges that are symmetric about the z-axis and have surfaces

represented by single-valued functions r = r(z). Slobozhanin [80] analyzed the stability of

an axisymmetric bridge with respect to arbitrary (i.e., both nonaxisymmetric and

axisymmetric) perturbations and constructed the general stability boundary in the (A, V)-

plane. (These results are presented in English in [136], and the stability boundary is

reproduced in [14, 119, 141].) Quantitative experimental data on the boundary of the

stability region were obtained by Elagin, Lebedev, and Tsmelev [61] ("microzone"

method), and by Sanz and Martfnez [53] and Russo and Steen [142] (neutral buoyancy

technique).

The conditions for which capillary surfaces with contact lines pinned to

solid edges are most unstable to perturbations of the liquid surface, rather than to

perturbations of the contact line, were obtained in a more general analysis by Slobozhanin

& Tyuptsov [20] (see also [22]). This was also examined for the particular cases of liquid

bridges held between disks and rods by Slobozhanin [20, 143].

If an axisymmetric equilibrium state is stable, then, for a small variation of

the parameters A and V, it has a unique continuous extension and the stability of the state

is preserved. However, if the equilibrium state lies on the stability boundary, the

uniqueness of the continuous extension is violated and the equilibrium state bifurcates.
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Methodsfor analyzingbifurcationsof theequilibriumstatesof acapillary liquid massand

the possiblebifurcationstructureshavebeendescribedin earlierwork (see,for example,

[22, 74, 141-147]).

To accountfor Plateau'sexperimentalresults,Michael [148] proposed

possiblebifurcationpatternsthatareplausiblewhenthedifferentaxisymmetricequilibrium

shapesof a bridge lose their stability. He further emphasizedthe needto study the

correspondingbifurcationproblemin detail. This problemhasbeensolvedfor acritical

cylinder. The solution is aparticular caseobtainedby Brown & Scriven [144] andby

Vega& Perales[95]. Thedynamicalbehaviorof anaxisymmetricliquid bridgeasit loses

stability on theboundarysegmentalongwhichaxisymmetricperturbationsarecritical was

studiedin [99, 105]. Finally, a sophisticatedanalysisof thenatureof the axisymmetric

bifurcationsalongthisboundarysegmentwasmadein arecentpaperby Lowry andSteen

[141].

The problem of stability under axial gravity has been examined for particular cases

by several workers The stability of cylindrical volumes (V = 1) to axisymmetric

perturbations has been examined by Coriell et al. [12], Meseguer [73], and DaRiva &

Martin6z [83]. Vega and Perales [95] obtained analytical approximations in the small

Bond number limit. Heywang [149] considered the stability to axisymmetric perturbations

for fixed contact angles of 90 °. Coriell and Cordes [82] also examined this case but

allowed for arbitrary perturbations.

Slobozhanin [117] examined the stability of liquid bridges held between

equidimensional coaxial circular disks and subject to steady axial gravity. In contrast to

previous work, he considered both axisymmetric and non-axisymmetric perturbations.

For Bo > 3.06, he showed that stability is always lost to non-axisymmetric perturbations.

He also considered several contact angles at each disk and found that as Bo -_ 0, the 90 °

case becomes singular. Russo and Steen [142] investigated the zero Bond number

maximum volume limit theoretically (using an energy method) and experimentally (in a
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Plateau chamber). They found that for rotund bridges (i.e. V > 1) an axisymmetric bridge

is first unstable to non-axisymmetric disturbances. This confirmed the experimental

results of Plateau who observed that axisymmetric rotund bridges lose stability when the

tangent to the free surface at the disk edge is parallel to the flat upper surface of the disk.

Slobozhanin and Perales [118] recently extended these analyses to include the full

range of possible contact angles and a wide range of Bo, V, and A. They showed that for a

finite Bond number, the stability margin can be represented in the V-A parameter space as

a curve defined by three segments (see Figure 1.4). The upper segment of the curve

corresponds to the maximum volume stability limit. Between points O and C stability is

lost to non-axisymmetric perturbations. At present no theory exists for the stability of

these non-axisymmetric configurations [ 118] although recent experimental work [150]

indicates that some of these configurations are stable (see Chapter 4).

For Bo < 3.06 the segment from D to C is characterized by loss of stability to

axisymmetric perturbations. This leads to breaking of the bridge into a pendant and sessile

drop. A small satellite drop is also created. The third segment of the stability margin

corresponds to small volumes and slenderness (V, A < 1). When gravity is directed

downward and the bridge liquid is denser than the surrounding medium, loss of stability

occurs via dewetting from the upper disk. The experimental results of Bezdenejnykh et al.

[55] are in good qualitative agreement with the theory of Slobozhanin and Perales.
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Figure 1.4. Stability diagram for bridges held between coaxial equal circular disks with
axial acceleration. Bo = 0 (dashed line) Bo = 0.1 (solid line). A, maximum volume; B,

maximum slenderness; C, nonaxisymmetric-axisymmetric transition; D, zero angle at the

top disk; E, local pressure minimum; F, local minimum of upper contact angle; G, local
maximum of upper contact angle; H, local pressure maximum. (After [118])

Vogel [25, 26] and Langbein [27] have examined the stability of bridges held

between flat plates. Here the contact angle is constrained to a given value. Vogel

considered zero Bo cases (constant mean curvature). He found that the liquid bridges are

symmetric with respect to the plates if the contact angles at both plates are equal. He also

showed that for a family of stable liquid surfaces, the capillary pressure increases as the

actual volume decreases. The shapes are sections of nodoids, catenoids, and unduloids. A

stable liquid surface cannot exhibit an inflection point between the plates. The unduloids

become unstable whenever their inflection point coincides with the contact point. Langbein

[27] examines the minimum volume stability condition by considering the liquid volume
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asafunctionof thecapillarypressure.Whenafamily of solutionsof thecapillaryequation

havetwo neighboringsolutionswithequalvolume,theenergyis at asaddlepoint.

Shearstabilizationof bridgeshasbeenexaminedtheoreticallyandexperimentally.

[24, 113,116,151,152]. Certainshearflows havebeenshownto beableto stabilizea

cylindrical annulusof viscousliquid boundedandshearedby an ambientliquid. Shear

appliedto liquid columnsdampstheaxisymmetricinstability,butnot to theextentthatall

wavelengthsdecay. Liquid columns with a central rod, however, canbe completely

stabilizedby a shearflow. Lubyimov [153]hasshownthatfor anannularliquid column

surroundedby anambientliquid containedin a cylindrical vessel,the columnscanbe

stabilizedthroughapplicationof circularlypolarizedvibration.

Therehavebeenfew theoreticalstudiesof the stability limits and hydrostaticsof

initially non-axisymmetricliquid bridges. To date,work hasbeenconfinedto studiesof

the effects of lateral gravity [96, 120-122]and eccentricrotation [74, 93] for bridges

supportedby coaxial and non-coaxial equidimensionaldisks. Perales[96] used an

asymptoticmethodto study thebifurcation of a cylindrical bridge subjectto lateral or

transversegravity. Laternumericalstudies[120-122]confirmedthis result. Laveronand

Perales[122] haveundertakena moregeneralapproachusingcomputationaltechniques

andobtainedbifurcationdiagramsfor non-axisymmetricbridgessubjectto a transverse,

inclinedgravity vector. Theirwork is restrictedto theminimumvolumelimit andgivesa

detailedanalysisof the nature of the bifurcations. They find that for lateral gravity,

cylindrical volumebridgeswith A > 2.38will losestabilityat a subcriticalbifurcation for

whichtheassociatedeigenfunctionis antisymmetric.It is speculatedthatthiswill leadto a

configurationof two nonsymmetricdrops.Thishasbeenconfirmedrecentlyby Alexander

et al. [121], who also find a satellite drop following the first bifurcation. For A < 2.38

stability is lost at a tuming point with an associated symmetric eigenfunction; breaking is

symmetric. For a given Bond number the minimum volume stability margin with lateral

gravity corresponds to the minimum volume limit for the zero Bond number stability
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marginfor axisymmetricbridges.LaveronandPeraleshavealsoinvestigatedthestability

of agravity vectorslightly inclinedfrom thelateral. Theyshowthatfor thesecases,lossof

stability occursat aturningpoint.

Apart from unpublishedworkusingmicrozones[154],experimentalinvestigations

of the stability of non-axisymmetricbridges under simulatedor actual low gravity

conditionshavebeenrestrictedto investigationsof theC-moderotational instability [57,

69].

1.2.1.2 Oscillations and vibration

Mason [51] found standing waves could be formed on liquid bridge surfaces by

vibrating one of the supports. During the early 1990's there was renewed interest in the

study of liquid bridge oscillations. To date, theoretical analyses have involved inviscid

bridges [61, 62, 104, 124, 28, 131,133], one-dimensional models [53, 55, 87, 89, 98, 99,

100, 104-106, 125, 127, 132] boundary layer analyses [128], linearized models and some

full numerical simulations. Oscillations have been examined in the limits Oh << 1, Oh = 1

and Oh >> 1 [155]. (Here Oh is the Ohnesorge number, Oh = g/(19qtR) !/2 where _ is the

dynamic viscosity.) For Oh << 1 Tsamopolous et al. [15] found that damping rate and

oscillation frequency increased with axial and azimuthal wavenumber. For small bridges,

gravity did not appear to affect the eigenfrequency despite distortion of the static and

dynamic shapes. In the small Oh limit the eigenfrequency is given by f_I = _ + col Ohl/2

[155] where the first correction to the inviscid mode COodepends only on A and the mode

being perturbed. Borkar and Tsamopolous [128] used a boundary layer analysis for Oh

>> 1 and calculated oscillation frequencies and damping rates for bridges undergoing small

amplitude oscillations. Damping was found to be due to either the viscous boundary layer

or the restrained motion of the three phase contact line. Higueras et al. [155] extended
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analysesto O(Oh)* valid for weakly dissipative bridges. Our experimentsinto the

behaviorof bridgesvibratingnearresonancefocusedon thenonlinearbehaviorof boththe

eigenfrequencyandtheeigenmode.

1.2.1.2.1 Axisymmetricoscillations

MeseguerandPerales[125] usedthelinearCosseratmodel to studytheeffectsof

step changesin low magnitude steady accelerationand later [132] carried out an

experimentalstudyandlinearanalysisof thevibrationof axisymmetricviscousbridges.

Transferfunctionsfor bothdiskswerecalculated.ZhangandAlexander[ 106]examined

thesensitivityof liquid bridgesto axialaccelerationfor thecaseof simultaneousexcitation

of bothdisks.

Langbein[29] hasdeterminedtheresonantfrequenciesof axisymmetricbridgesfor

V =1by first calculatingoscillationsof infinite liquid columns. For eachfrequencyan

infinite setof oscillationsis obtained.Thesearethensuperposedto find solutionsfor finite

columns. Explicit dependenciesbetweentheeigenfrequenciesandA andOh areobtained.

Ahrens et al. [156] have measured the resonance curves of small liquid columns using

stroboscopic illumination and pressure sensors attached to the disks. Recently, Morse et

al. [157] have measured the resonance curves by exciting the bridge with ultrasonic

acoustic radiation.

Non-linear oscillations have been simulated by Chen and Tsamopolous [130]

using the full Navier-Stokes equations. Other analysis of non-linear mechanical

oscillations are in recent papers by Nicohis and Vega [158], Alexander and Zhang [129],

and Meseguer et al. [127]. Experimental studies of nonlinear effects during oscillation of

small bridges have also been carried out [114, 159]. It was observed that the

* f(E) is O(e) when lim f(e----_)= 0
e--_og(e)
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eigenfrequencies decrease as the oscillation amplitude is increased. A similar "softening"

effect was reported by Eidel [133].

Meseguer et al. [87, 105, 107, 108] and Zhang and Alexander [106] used 1D

models to analyze the oscillation of bridges to the point of breaking. Shulkes [134] used a

finite element to solve the velocity-potential equations governing the progression of an

axisymmetric inviscid liquid bridge toward breakage. He compared his results to 1D

Cosserat and slice models. It was concluded that 1D models do not adequately represent

the dynamics when the bridge is close to breaking.

1.2.1.2.2 Non-axisymmetric oscillations

Experimental and theoretical studies of non-axisymmetric oscillations are limited.

Small amplitude inviscid non-axisymmetric oscillations have been examined theoretically

by Gafi_in and Barrero [97] for small free inviscid oscillations and included the effect of the

outer fluid. They calculated the first natural frequency for both axisymmetric and

transverse modes (nonaxisymmetric modes) as a function of slenderness and Bond

number for cylindrical volume bridges (V = 1). They also located the locus of points in

Bond-number frequency space at which both axisymmetric and transverse modes have the

same first frequency. It was also found that at critical slenderness Ac both modes have

zero frequency. This point was found to be a bifurcation point corresponding to the

axisymmetric-nonaxisymmetric transition described earlier.

Experimental work with lateral oscillation of the lower disk was also carried out

by Sanz and Lopez-Diez [62]. They examined free frequencies, deformation modes,

velocity fields and the influence of the surrounding viscous bath. For density matched

conditions, i.e., Bo << 1, they found that only the azimuthal mode m = 1 case could be

excited. It was found that, due to viscous effects, only the lower longitudinal modes could

be obtained. Tsamopolous et al. [15] examined small viscous oscillations caused by

lateral oscillation of the lower support disk in the absence of an encapsulating fluid and for
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V = 1 and Bo = 0. They examined the first five non-axisymmetric modes for azimuthal

wavenumbers m = 1 and 2. Their calculated results agreed with those obtained in [63].

They also found that the bridge remained stable to non-axisymmetric disturbances even

when the bridge slenderness was increased beyond the Rayleigh limit. This is in accord

with the static stability results of Slobozhanin and Perales [118] described earlier (and also

results for liquid jets [137] and annular core flows [160]).

1.2.1.3 Rotation

Although not discussed in detail in this dissertation, for completeness and

comparison, previous work is presented. For rotating bridges, the Weber number, which

is the ratio of centripetal to surface tension forces, is the important parameter governing

surface shapes whenever Bo << We, i.e. when the centrifugal acceleration greatly exceeds

the gravitational acceleration. For coaxial disks, the bridge may be subject to rotation

which can result in a C-mode deformation or jump-rope instability of the bridge as

observed by Carruthers et al. on Skylab [58]. Rotation also modifies the stability limits.

For example, the maximum stable slenderness, Amax, of a cylindrical column rotating with

a circular frequency f2 is inversely proportional to the square root of the Weber number,

i.e. Amax =/t/(I + We) l/2-

If B = 0 and We > 0, the relation between critical values of A and We is also

defined analytically [145, 161] (see also [136, 162-164]). For We = 0 and B > 0, the

bridge stability to axisymmetric perturbations was studied in [12] and, if B << 1, in [95,

98]. The stability with respect to arbitrary (rather than only axisymmetric) perturbations

was analyzed in [117, 165] (see also [118, 136]). It was found both theoretically (for

We > 0 and Bo << 1 [74, 95]) and experimentally [66, 135] that even weak gravity may

considerably narrow the stability region for an isorotating liquid bridge with V = 1. The

effect of gravity and isorotation on the stability to axisymmetric perturbations for a bridge

with V = 1 and A close to rt (2.75 < A < _:) was studied in [74, 66, 166]. An analysis of
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thebifurcationproblemfor thecaseV = 1,We > 0, 0 < Bo << 1 [74, 81, 95] showed that

the loss of stability results in breakage of a liquid bridge.

For the case of a prescribed value of 131, the stability problem has previously been

considered only for the limiting cases of zero-gravity and isorotation, or non-zero gravity

and no rotation. For an isorotating weightless liquid bridge (Bo = 0, We > 0) with 131 =

90 ° , only cylindrical surfaces may be stable and any other surfaces are either critical or

unstable [117, 165]. The dependence of A and V on We for neutrally stable surfaces with

131= 80 ° and _1 = 75° was obtained in [79, 167]. For any fixed value of 131 in the interval

0 < 131 < 90 °, it has been shown that an isorotating weightless bridge loses stability with

respect to nonaxisymmetric perturbations [168]. The related stability problem for arbitrary

values of Bo was first solved in [82] and later in [136]. In addition to 131 = 90 °, the cases

131 = 80 ° and 131 = 75 ° have also been considered [117, 137, 165]. The shape of the

molten zone during growth of silicon and germanium crystals (131 - 79 ° and 77 °) was

analyzed in [91 ].

1.2.1.4 Force measurements

There are several papers devoted to the calculations and experimental measurement

of the forces exerted by liquid bridges on their supports [16, 30-33]. These are mainly for

bridges held between spherical supports. Previous work has concentrated on characterizing

pendular bridges between spheres in terms of their volume, curvature and force of

adhesion between the spheres. Static and dynamic situations have been analyzed.

Mazzone et al. [32] found that the force required to separate two moving particles is

sometimes two orders of magnitude higher than for the static case due to the viscous

resistance to motion in the dynamics case. We were interested in performing accurate

measurements of the force exerted by a bridge on a disk support, when the contact line is

pinned, especially near static stability limits.
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in detail in this dissertation, for completeness and

comparison, previous work is presented. The first studies of the effects of electric fields on

liquid bridges were undertaken by Gonzalez et al. [56]. Since then interest in these effects

has increased [153, 169-173]. The electric field always plays a stabilizing role in the

dielectric limit and lowers the minimum volume stability limit. By increasing the electric

field and simultaneously decreasing the volume, the symmetry of the breaking process in

the presence of a gravitational field can be changed such that two equal volume drops rather

than two unequal drops are formed [169].

1.2.2. Contact angle and interfacial energy

In cases where Bo << 1, the physics are dominated by the interfacial energy. The

theory of interfacial energy, also called surface tension (see [174, 175] for important

differences) is briefly reviewed. The subjects of contact angle, contact line motion

(wetting), and interracial energy are entire fields of inquiry in themselves, and only a

passing reference to relevant overlapping portions will be made here.

Of special importance are the basic theory of an interface (especially in terms of a

material dividing surface), experimental techniques used to measure the interfacial energy,

and the wetting of fluids on a rough substrate. In order to properly calculate Bo, accurate

measurements of the interfacial energy had to be performed. The support disk surfaces

were rough, and thus the wetting behavior of the oil needed to be studied in order to make a

proper materials selection.

There has been a great deal of research on the theory of interfacial energy (see [176-

184] for a few major texts) as well as different methods of interfacial energy measurement

[ 185-202]. The concept of interracial energy as the energy of a surface of division between

separate phases of materials has been applied to a diverse group of objects [203-206].
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Finally, there has been a great deal of work applied to fluid flow problems involving a

moving three-phase line [211-232].

The problem begins with an attempt to mathematically describe and experimentally

measure an infinitesimally thin interface. Historically, aside from superficial observations

by Aristotle [233] and Galileo [234], the beginning of serious inquiry into the nature of

interfacial energy and contact angle began with Young in 1805 [235] with the development

of Young's equation:

]tsv - Ysl = 71v cos 0e (1.3)

where 7sl is the interfacial energy between the solid and the liquid, Ysv is the

interfacial energy between the solid and the vapor, Ylv is the interfacial energy between the

liquid and the vapor, and _)e is the equilibrium contact angle. This equation is a simple

balance of force at a three-phase contact line. The physical assumptions made in this

model are that the solid surface is ideal (nondeformable) in the region of the contact line,

and that the three-phase line has little or no curvature. In 1869, Dupr6 [236] introduced the

concepts of the work of adhesion and the work of cohesion in an effort to place the theory

of capillarity on a thermodynamic foundation. However, it was Gibbs [181 ], in 1878, who

made the first major advance in the theory of dividing surfaces. Gibbs rigorously derived

Laplace's equation relating the local pressure difference across a dividing surface to the

local curvature of the surface by minimizing the thermodynamic free energy E - TS of the

system when a dividing surface of small curvature is varied. In analyzing the equilibrium

of two fluids and a solid, Gibbs allowed the contact line to move off the surface. Although

this does not affect the result if the fluids and the solid meet at a continuous (flat) part of the

solid, it does if the fluids and the solid meet at a comer of the solid. Gibbs found that there

is an equilibrium contact angle at the corner of the solid, where in reality, a range of contact
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angles is allowed. This was proven later [20,21]. Gibbs then made an unsuccessful

attempt [ 181 ] to incorporate the strain of a solid into his calculations.

The overwhelming majority of Gibbs work effectively placed theory well beyond

experimental verification, and little theoretical work was carried out for several decades.

Bangham and Razouk [237] recognized that in a three phase system, the equilibrium

interfacial free energies Ysv and 71v are related to the pure surface energies of the solid with

a vacuum Ys, and the liquid with its own saturated vapor Yl, by the equilibrium film

pressures rtsv and rtlv. Simply put, Ysv - 7s = rtsv, and 71v - 71 =/l;lv. Thus Young's

equation is modified to be:

Ys -/1;sv - 7sl = (71 -/1;lv) COS _e (].4)

In addition, a term 7tsl can be added which represents adsorption in the solid-liquid

interface. For most systems, the film pressures r_sl and nlv can be neglected, and only rtsv

is given consideration. Good, in [ 184], points out that ignoring the film pressure entirely

may produce incorrect results, as some systems may have 71v much lower than 71. Fox

and Zisman [238] used an empirical method to determine Ys, which is to plot t'1 linearly

against _ for a series of liquids having a decreasing 71. This empirical method will only

work for pure substances. Also, this method will not work when more than two materials

are present at an interface. Good [177, 178, 179] was the next pioneer in surface science,

and his collaborations with Girifalco [177, 178], van Oss, and Chaudhury [239-241] were

the next significant attempts at understanding the ideas of wetting, contact angles, and

solubility. In 1957 and 1960, Good and Girifalco published several papers introducing the

"geometric mean rule" [177, 178]. Through use of the geometrical mean rule, Good and

Girifalco were able to eliminate Ysl from Young's equation and give support for Fox and

Zisman's approach of a limit approaching the critical surface energy that is a measure of

the pure surface free energy of the solid. Later developments incorporated the effects of
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acids and bases[239-241]. In addition, the theory of capillarity has recently been

generalizedto includesurfacesof moderateor largecurvature[181-183].

A major thrustof contactangleresearchattemptedto resolvethephenomenonof

contact anglehysteresis.Freundlich[242] was the first to experimentallyestablishthe

existenceof contactanglehysteresis.In fact, thereisa rangeof contactanglesthatcanexist

betweenthe so-called"advancing"contactangle0a and the "receding" contact angle Or.

The accepted theoretical basis for contact angle hysteresis is that the substrate is non-ideal.

That is, the surface is not smooth, rigid or homogeneous.

Wenzel [243] recognized that Young's equation may only hold locally, not over the

entire surface, especially if the surface is rough. By defining _ to be the ratio of actual

surface area to the geometrically smooth area, Young's equation is modified to:

_(Tsv - 7sl) = 7iv cos Ow (1.5)

Where 0w is the Wenzel contact angle, which approaches the equilibrium contact

angle as the surface roughness increases, as derived rigorously by Good [244].

Neumann [176] carried out a thorough analysis of menisci, and derived

Young's equation by varying the Helmholtz free energy as a function of the contact angle.

It was necessary to distinguish between _b, the phenomenological contact angle, 0e, the

(unique) contact angle that solves Young's equation, 0a and Or, the advancing and receding

contact angles, 0w, the Wenzel contact angle, and 0c, the Cassie contact angle. Cassie

[245] proposed that for a heterogeneous surface, with intrinsic contact angles Oel and Oe2,

and fractional surface areas ZI and Z2, the apparent contact angle 0C is given by

COS OC = El cos Illel + ]_2 cos _e2 (1.6)
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Note that 0Cand0W donotconstituteYoungcontactangles,becausethey donot

apply to smooth,homogeneoussolid surfaces. Neumannalso carriedout a systematic

computationalanalysisof piece-wiseheterogeneoussurfaces.Heconcludedthatmost, if

not all, contact angle hysteresiscan be explained by considering the effect of a

heterogeneoussurfacewith patchesof differing freeenergies,andcorrespondingdifferent

equilibrium contact angles. His computations showed that the patchwork of

heterogeneitiescausesthefreeenergyof theinterfaceto haveseveralmetastablestates,and

this leadsto different equilibrium contactangles. Neumannshowedthat the hysteresis

effectcanbe removedby makingthegrainssmallerthanthethicknessof the liquid/vapor

interface,approximately0.I I.tm. If thegrain sizeis smallerthanthis,thesurfaceappears

homogeneousto theinterfaceandthehysteresiseffectwill disappear.

Neumannthenwenton to discusssurfaceroughness[176],by idealizinga

rough surfaceas a sawtoothpatternwith symmetricdeviationsabout 90 degrees(the

smoothnormal). In thiscasemetastablestatesof thecontactangleexistaswell. Neumann

postulatedthatthecontactanglewill fall to the lowestpossibleangle,zerodegrees,but did

not continue this line of inquiry. In fact, severalmethods[246] of determiningsurface

tension,includingcapillaryrisemethods,dropweightmethods,theduNouy ring method,

andtheWilhelmy platemethoddemandsazerodegreecontactangleto obtainmaximum

accuracy. GoodandNeumann[200] evensuggestthattheWilhelmy platebe roughened

using groundglassor sandblastedto makesurethe angleis zerodegrees.We observed

that the best experimental conditions were obtained when the disks were slightly

roughened,allowingtheoil to completelywet thesurface.

Whendiscussingcontactangles,it is imperativeto beabsolutelyclearasto which

contactangleis beingreferredto. Thereis0, thetrue(microscopic)contactanglethatmay

or may not be measurable(seesection2.2.2), 0a and Or, the advancing and receding

contact angles, 0e, the contact angle that satisfies Young's equation, given all the

assumptions implicit in the equation, and 0w and 0C, contact angles that refer to rough or
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heterogeneoussolid substrates.In general,thecurrentinvestigationattemptedto measure

_. As seenbelow in section 1.2.3,whatwasactually measuredwasa local slope(the

"macroscopic"contactangle)which is relatedto _b(the"microscopic"contactangle)in a

complex way. This problemcanbe addressedby measuringthe slope in a consistent

locationfrom oneexperimentto another,at similarmagnifications.

1.2.2.1 Experimental techniques to measure the interfacial energy

Adamson [246] comprehensively lists over 20 different experimental techniques to

measure the interracial energy between two fluids. These can be broken down into three

broad types of measurements: shape analysis of a drop, a balance of gravitational and

interfacial energies, and dynamical flow-type measurements. We tried many different

methods, as each has its own set of assumptions and limitations.

1.2.2.1.1 Shape analysis

Shape analysis is an "inverse" method that involves fitting an observed shape to a

computed profile. This includes the bubble shape, pendant drop, and the method of

curvature. This method is also used in some liquid bridge research, in that the digitized

profile of the bridge is fitted to a model by allowing the Bond number (interfacial energy)

to vary. In all of these cases, the interfacial energy is calculated from a set of parameters

measured from an image. We have used the hanging drop method. It is a simple method,

and gives good accuracy. Shape parameters are measured from a pendant drop, which is

the largest stable drop that remains attached to a round support, (Figure 1.5) and the

interfacial energy is given by [246]:

Apgde 2
•_ = __ (1.7)

H
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where1/His a functionof ds/deandcanbefoundin a look-uptable,suchas[197,247]. It

is importantthatthedropbeaslargeaspossibleyetremainstable.

de

d e

I

I

I

i

Figure 1.5. Image of a hanging drop.

1.2.2.1.2 Balance of gravity and interfacial energy

These methods include the capillary rise, drop weight, du Nouy tensiometer,

Wilhelmy plate, maximum bubble pressure, sessile drop, wire, capillary pull, and film

balance methods [246]. All of these methods rely on the balance of gravitational potential

energy and interfacial energy. These methods, with the exception of the drop weight,

sessile drop, capillary rise, and maximum bubble pressure methods require use of an

electrobalance to measure the small value of 7. It is usually necessary to satisfy the perfect
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wettingcondition(in thesessiledropmethod,perfectnon-wetting)to provideanaccurate

result. It is alsoimportantin this methodto haveacirculardroppingtip. Someof these

methodscanstill beusedif theconditionof _ = 0° or 180° is notmet,but thenthecontact

anglemustbe accuratelymeasuredaswell. We haveusedthe drop weight method. It

requiresaminimumof equipment,is fairly accurateandthecontactangledoesnotneedto

bemeasured.In thedropweightmethod,a dropis slowly createdandallowedto detach

from thedroppingtip. It is assumedthatthis is aquasi-staticprocess,andthatthedetached

dropis thetheoreticalmaximumin weight. Theinterfacialenergyis givenby [246]:

Y= ApgV0 (1.8)
2rtrf

where f is a correction factor that accounts for the fact that not all of the drop detaches from

the dropping tip. The values of 'f' for mercury in air are tabulated in [197,247].

1.2.2.1.3 Dynamical methods

This category includes the falling column of liquid method, flow method, levitated

or oscillating drop, oscillating jet, rotating drop, capillary wave and liquid sheet methods

[246]. These all require a large investment in time and equipment to accurately perform a

measurement. The interfacial energy is related to the eigenfrequency of the drop. The

capillary wave method can be used as part of a light scattering experiment. Microscopic

surface waves are always present, and the interfacial energy is related to the period and

wavelength of these oscillations. The liquid sheet method uses colliding jets of fluid to

create a stable circular sheet, the radius of which is related to the interfacial energy. The

oscillating jet and flow methods require flow out of a non-circular orifice, and the

interfacial energy is related to the slenderness of the orifice and the wavelength of the

exiting jet of liquid.
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1.2.3 Contact line motion

Although this problem was not studied in detail, it is a relevant issue regarding

materials selection (Chapter 3) and contact angle measurements (Chapter 6). The majority

of pioneering work on the theory of contact line motion has been made by Dussan [212,

216, 217, 228-230] in collaboration with others, in terms of identifying the appropriate

boundary conditions of contact line motion to solve the Navier-Stokes equation for the

shape of the fluid interface. The application of the no-slip boundary condition to a moving

fluid boundary introduces a non-integrable singularity at a three-phase line [229, 239]. In

response to this, several models incorporating slip have been introduced [225, 229, 231,

232] resulting in surprisingly good agreement between experiment and theory [213]. In

1989 Ngan and Dussan [217] showed that the formulation of the boundary-value problem

relies only upon one parameter f_:

Q -- * [ ¢- cos qb sin ¢_[_ L s
(1.9)

which is a combination of the true contact angle ¢, the capillary number Ca = ].tv/% the

length scale "a" associated with the inner (microscopic) region of the fluid and the slip

length Ls, and a function that depends on the specific slip model li(_b). If in fact a slip

model is appropriate, the contact angle as a function of distance "r" from the contact line

obeys: (see Figure 1.6)

_(r)- Q+Ca 2sin g2 In r (1.10)
f2-cosQsinQ a



29

Figure 1.6. A moving fluid interface under high magnification.

Dussan was primarily concerned by determining under what conditions the inner

region determines the behavior of the bulk region. In contrast to this approach are the

molecular dynamics simulations of Koplik [221, 222] in which the no-slip boundary

condition arises naturally as a result of a dense liquid interacting with a solid wall. It

appears (in the simulations) that the individual molecules absorb a high but finite amount

of shear at the expense of some slip. The main thrust of the articles is that a simulation

involving only a few thousand molecules is enough to display continuum (i.e. no-slip)

behavior. What all of the various slip models and models incorporating moving contact

lines share is the insistence that the contact angle be measured as close to the contact line as

possible.

Although progress over the years has produced much insight into understanding

how a fluid behaves in the vicinity of a three-phase line, many questions still need to be

answered. There has not, as yet, been a definitive statement on how the dynamic or static

apparent contact angle and the true contact angle are related, or even how to define the
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apparentcontactangle. Neither hastherebeena satisfactorymethodof characterizing

rough or chemical inhomogeneoussurfaces,other than somerudimentary statistical

methods[184]. Theapplicability of the geometriccombiningrule needsto beexplored

further,particularly for solutions.Thesurfacefreeenergyof a strainedsolid hasnot been

givensatisfactorytreatment.

1.3. A brief summary of experimental results

In this section, the experimental results obtained during the course of this research

project are briefly presented. Details are presented in later chapters.

A series of experiments studied the static stability limits of axisymmetric liquid

bridges (chapters 4 and 5). Other experiments followed the dynamic behavior of liquid

bridges whose supports underwent sinusoidal motion (chapter 6). Finally, a series of

experiments measured the force exerted by the liquid bridge on the lower support disk

(chapter 7).

1.3.1 Static stability limit results

This can be divided into two different groups: K = 1 and K _: 1.

For K = 1 (chapter 4), the axisymmetric stability limits at Bo = 0.002, 0.054, and

0.089 were measured (Figure 4.8). The transition point between axisymmetric and

nonaxisymmetric breaking modes was found for Bo = 0.089. Agreement with theory was

good for the lower limit, but the upper experimental limit was consistently 5-10% below

the theoretical limit at large values of A. It was found that all transitions to a

nonaxisymmetric state lead to a stable nonaxisymmetric bridge except for the transition

point between axi- and nonaxisymmetric states. The nature of the bifurcation across the

maximum volume stability limit was studied and was found to transit between a

supercritical bifurcation and a subcritical bifurcation at an slenderness between 0.40 and

0.60. Bridges with slenderness 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 pulled near Bond number 0
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andassmall injectionsof oil wereadded,thechangein shapeof thebridgewasmonitored

underhigh magnification. Therateof changeof shapeto volumeincrement,d_/dV, was

plotted andthe curves(Figure4.12)showa roundedappearancefor slendernessgreater

than0.60andapeakedappearancefor slendernesslessthan0.40. Thisagreeswith theory.

For K _:1(chapter5), thestability limits of axisymmetricbridgesat Bo -- _--_.1 for

K = 0.09, 0.2, 0.4, 0.6 and 0.8 were measured (Figure 5.2). Agreement with theory was

good for the lower limit and the upper limit was again consistently 5-10% below the

theoretical limit at large values of A. The transition of the neck location for Bo = 0.1 was

found and was used to measure the interfacial energy of silicone oil and the bath fluid

(Figure 3.12). The transition on the upper stability boundary from nonaxisymmetric to

axisymmetric states was found for K = 0.2 (Figure 5.4). The behavior of a bridge near the

lower stability limit as K ---) 0 was investigated for K = 0.09 (Figures 5.6, 5.7).

1.3.2 Dynamics

Several experiments were performed in an effort to measure the resonant

frequencies (chapter 6). The values of N = 1,2,3; m = 1 resonances were estimated for

bridges of slenderness 2.0, 2.6, and 3.0 (Figure 6.2) (V = 1, 100 cs oil). The ratio of

maximum bridge displacement relative to disk displacement was measured for a bridge of

slenderness 2.6 from 0.86 to 0.973 Hz at amplitudes of 6.3* 10 -3, 3.16" 10 -2 and 6.3 * 10 -2

g (Figure 6.4). Contact angle motion was measured (Figure 6.5) for bridges of

slenderness 2.6 and 3.0 (V=I, 5 cs oil) in the neighborhood of N = 1, m = 1 for the

following conditions:

slenderness 2.6: frequency from 0.65 to 0.75 Hz, increment --- 0.01 Hz, acceleration =

1", 2", 3* and 4"10 -4 g, static Bo < 10 -4.

slenderness 3.0: frequency from 0.52 to 0.66 Hz, increment -- 0.01 Hz, acceleration =

2"10 -4 g, static Bo < 10 -4.
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Thecontactanglewasmeasuredmanytimesduringonecompletecycle to ensure

the maximum and minimum were measured. The gain curves show evidence of

saturation.Therangeof contactanglemotionshowsa smalldip attheresonantfrequency.

For slenderness3.0, the dip occurs on the oppositeside of the resonancepeak than

slenderness2.6. The resonancefrequency shows a positive drift with increasing

acceleration(slenderness2.6) TheFourierplanewasimagedduringlateralvibrationof a

bridge slenderness2.6 at 0.68Hz for accelerations0, 2", 4*, 8* 10-5 and 1", 2* 10-4 g

(Figure 6.10). Thespatialfrequencycomponentsarevisible. Thefiltered bridge images

for the sameaccelerationsweresubjectedto FFT analysisaswell (Figures6.11, 6.12).

Theseshow the presenceof higher-orderspatial modesin a bridge oscillated at the

fundamentalresonantfrequency.

1.3.3 Force balance data

Paths in A-V space were traced by keeping V0 constant and changing A (chapter 7,

Figure 3.14). This was done at various values of Bo. The static force exerted by the

bridge on the lower disk was measured and graphed as force versus slenderness (Figure

7.4). For low slenderness bridges, the force curve exhibits a maximum before breaking.

At larger slenderness, the force curve does not exhibit a maximum. The force was

calculated by numerically solving the equation for the bridge profile (Figures 7.5, 7.7). The

experimental paths are given below in Table 1.1:
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Bo Ai Vi Af Vf

0.015 0.314 2.02 0.966 0.658
0.712 1.786 1.804 0.705
1.30 2.45 3.02 1.05
1.70 4.11 3.40 2.05
2.89 5.94 4.41 3.89

0.009 0.338 1.88 1.27 0.523
0.219 1.16 0.577 0.441
0.134 0.946 0.224 0.568

0.016 1.555 1.622 2.423 1.00
2.4097 1.885 2.912 1.559
2.845 2.702 3.420 2.316
2.561 4.083 3.440 3.039
2.50 4.52 3.445 3.28

0.0012 1.687 2.89 2.888 1.689
2.232 4.458 3.984 2.497
2.403 5.897 3.984 3.557

0.056 0.50 1.004 0.694 0.723
0.677 1.367 1.268 0.730
0.928 1.448 1.576 0.855
1.067 2.056 2.168 1.011
1.398 2.173 2.452 1.238
1.451 2.676 2.525 1.537
1.815 3.72 2.518 2.549

-0.063 0.103 2.05 0.211 1.00
0.252 1.505 0.431 0.880
0.707 1.732 1.18 1.038
1.955 2.506 2.835 1.728

Thelower stability limit wasapproached,but not theupperstability limit because

thebridgewouldslip overtheedgeof theforcebalancedisk.



Chapter 2

THEORETICAL DEVELOPMENT

In this chapter the theoretical basis for the liquid bridge research described in this

dissertation is presented. First, a short history of the problem of Plateau will be presented.

Next, without proof, the governing equations for liquid bridge statics and dynamics are

presented, as well as a short description of typical solution methods.

1. Plateau's Problem

The problem of Plateau is to prove the existence of a minimal surface bounded by a

given contour F. This was first suggested by Plateau in 1863 [248]. The complete

solution to this problem remains unsolved. Of primary difficulty in the solution is the fact

that this problem is represented by a system of non-linear differential equations with the

additional non-linear constraint that the area of the surface is minimal. The problem was

first linearized by a reparameterization and a method was developed to solve the linear

problem in the most general form based on ideas of Reimann, Weierstrass and Schwarz

[249]. The first proof of existence given the most general type of contour, an arbitrary

Jordan curve F in n-dimensional Euclidean space E n, was presented by Douglas [250] and

simultaneously by Rad6 [251]. The Jordan curve theorem states that if F is a simple

closed curve in _R2 then 9_ 2 \ 1" has exactly two components, a bounded component (the

inside) and an unbounded component (the outside), each with F as a boundary. Douglas's

34
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work is in asensemoregeneralthattheoriginalproblemof Plateau. Douglas considered a

minimal surface bounded by k Jordan curves and which additionally has a prescribed

topological structure, e.g. orientable or non-orientable, one-sided or two-sided, and to have

a prescribed genus. The existence theorem of Douglas reads: let F be an arbitrary Jordan

curve in E 3. Then there exists a regular, simply-connected minimal surface bounded by F.

Douglas accomplished this task by departing from the classical variational problem into a

different method not using derivatives. The problem of Plateau was solved in the classical

variational method by Courant [252], who claimed that his method yields solutions not

available by the method of Douglas. Plateau's problem continues to be an active area of

mathematical research [253-261]. Recently answered is whether the surface can exist

without self-intersections. It should be stated that the original problem of Plateau, the

existence of a regular, simply-connected minimal surface in E n bounded by an arbitrary

Jordan curve F, is as of yet still unsolved [253]. In general, the surface is not a unique

solution. Also unsolved is the related question of whether solutions to the problem are

stable to perturbations.

The liquid bridge problem is a subset of the original problem of Plateau. The liquid

bridge problem requires the existence of a minimal surface with a constrained volume and

fixed boundaries, in the case of contact line anchoring.

2. Governing equations for liquid bridge equilibria and dynamics

The governing equations will be presented without proof. For more detailed

derivations, please refer to the appropriate reference or appendix. The general inviscid

equations, following [62, 68, 118] are first discussed. The equation for the static interface

is defined as F = r - f(0,z) = 0 where f is the deviation of the interface from a cylinder of

radius r. The shape of the interface is defined by the pressure jump across the interface

Ap = pin _ pOUt:
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(2.1)

which is written explicitly as:

_(,+_z_>oo-_)+_zz(__+_a)-e_o{_o+_zo)
Ap=27 IF2(1 + Fz2) + F213/2 (2.2)

where subscripts indicate partial derivatives with respect to the subscripted variable. See

Appendix E for a detailed derivation of Equation 2.2.

For calculating the shapes of axisymmetric bridges, a common method

used is the "shooting" method of numerical solution. The results of these calculations are

used for determinations of stability limits (Chapters 4 and 5) and for force calculations (see

Chapter 7). When using the shooting method, the interface is reparameterized in terms of

r(s) and z(s) where s in the arclength as measured from a support surface. All quantities

are made dimensionless with the parameter L c = _g. In the shooting method,

boundary conditions at s = 0 and s = sf are replaced by conditions only at s = O. r(s) and

z(s) are functions of A, V and Bo. Numerically integrating the following equations:

r"(s) =- z' (s) 13'(s)

z"(s) = r'(s)13"(s)

(2.3)

with the following boundary conditions:

r(0) = r0

r' (0) = cos(_l)

z(0) = 0

(2.4)
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whereprimes indicatea derivativewith respectto arclength,and _3= 13(s)is the angle

betweenthetangentto theshapeandthehorizontal,providessolutions. Equation2.3can

be derived by noting that r' = cos 13and z' = sin [3. 13'(s)can be calculated from:

Ap z'(s____)

[B'(s) = ez(s) + _/[Ap. g[.¥ r(s) ' where e indicates the direction of the effective gravity:

= -sign(Ap-g ). The volume preservation constraint is:

V = Is'e
z'(s)r2 (s)ds (2.5)

LR 2

An axisymmetric equilibrium configuration of a liquid bridge is stable only if it is

stable with respect to both axisymmetric perturbations (the normal to equilibrium surface

component N of such perturbation is _0 (s)) and the most dangerous nonaxisymmetric

perturbations. The latter correspond to the first harmonic in the polar angle 0 and have the

form N = tPt(s) cos 0. We use the method described in [136] to study the stability to

perturbations satisfying fixed contact line and constant volume perturbations. An

equilibrium bridge is stable to axisymmetric (to nonaxisymmetric) perturbations if the

function D(s) (function 9_ (s)),

D(s) = q)o! (s)I_f rq°02 (s)ds - _02 (S)I_f I'q001 (s)ds (2.6)

does not vanish

the solutions of the following initial-value problem:

Lqo---q/'+ qo'+ br'+2prz'+--v-+ q_

on the interval 0 < s < sf. Here the functions (Pol (s), q)o2 (s) and q)l (s) are

(2.7)
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If there is at least one point s, 0 < s < sf, at which D(s) or q_l(s) vanishes (in practice,

changes sign), then the bridge is unstable.

We define the point s = s* as the first point on the solution of Equation (2.6) and

(2.7) at which one of the functions D(s) or q01(s) vanishes. For a neutrally stable surface,

axisymmetric (nonaxisymmetric) perturbations are critical when D(s) (_l(s)) first

vanishes at s = s*. To find the profile of a neutrally stable surface with a prescribed value

Ap until the conditions of
of [31 and a chosen r0, we vary the parameter q - _]Ap- gl" -/

r(s*) = r0 and constant volume are satisfied within the required accuracy. For the

construction of a general boundary of the stability region, this procedure is performed for a

sequence of possible values of the angle 131.

Now examine the governing equations for viscous oscillations of liquid bridges,

following [15] are presented. The dimensionless conervation of mass and momentum

equations are: (see appendix B for a detailed derivation)

V.v=0

D___vv= F_Ivp+Iv2v
Dt 13 Re

(2.8)

with the following boundary conditions:

Tangential stress vanishes: t0.T = tz.T = 0, r = f(0,z,t)

Balance of normal stress: T.n/Re +2Jn = 0, r = f(0,z,t)

OF
Kinematic boundary condition: n.-- = n. v

0t

(2.9)

Where Re is the Reynolds number pvR/g, n is the surface normal, T is the surface

traction (see appendix B) and to, tz are the unit surface tangents. The kinematic boundary

condition equates the velocity of the surface to the fluid flow velocity. When axisymmetric
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perturbationsareconsidered,theradialvelocityandits derivativewith respectto erarezero

at the centerline, and the azimuthal velocity is zeroeverywhere. Therefore, given a

divergence-freevelocityfield, theaxialvelocitymustbezeroatthecenterlineaswell. For

nonaxisymmetricdisturbances,theaxial velocity at thecenterlinemustbeindependantof

0, which is satisfied only if it is equal to zero. The condition of the radial and azimuthal

velocities depends on the wavenumber m (from [15]):

re=l:

m>_2:

Vr+ vo= Vz" O, r = 0

Vr = vo = Vz = O, r = O.

(2.10)

In addition, the contact line remains fixed, and all velocity components are periodic in 0:

f(z,t) = 1, z =

f(O,z,t) = f(O+27t,z,t)

(2.11)

as well as the usual volume constraint.

In order to calculate the eigenmodes and eigenfrequencies, the equations are

linearized around a steady state. Small volume-preserving perturbations of amplitude E are

made for all dependent variables:

v = Vb + EVp, p = Pb + epp, f = fb + efp, T = T b + gTp. (2.12)

The base states are calculated for a static case. Finally, the usual decompositions are made

for the variables:



Vr,p(r,O,z,t) = fir(r,z)eimOe -°t

VO,p(r,O,z,t ) = _o(r,z)eimOe -°t

Vz,p(r,O,z,t) = fiz(r,z)eimOe -°t

pp(r,O,z,t) = _(r,z)eimOe -°t

fp(r,O,z,t) = f(r,z)eim°e "°t

where m is the azimuthal wavenumber, and _ is the (complex) eigenvalue.
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(2.13)



Chapter 3

EXPERIMENTAL APPROACH

In this chapter the experimenta/apparatus, physica/measurements and ca/ibrations,

any general experimental techniques that were used for the different experiments will be

discussed in depth. Finally, the error sources in the system will be presented.

3.1. Experimental Apparatus

3.1.1 Plateau tank apparatus

The experimental apparatus consists of a neutrally buoyant, or Plateau tank (see

Figure 3.1) containing 3.8x 104 cm 3 of bath liquid. The tank is a rectangular glass-walled

box with a machined aluminum base-plate. The base-plate has a 5 cm diameter hole for

the lower support mechanism and a 0.95 cm hole for a drainage tube. The apparatus

support structure (not shown) consists of 5 cm diameter cast iron pipes filled with sand to

reduce vibration. The support structure is securely anchored to a 1.22 x 2.44 m optical

bench fitted with vibration-damping legs. There are two sets of motors. The lower set are

attached to a large aluminum plate that can be adjusted to precisely align the upper and

lower support disks. The upper disks are rigidly attached to the support structure. All

metal has been painted flat black to reduce reflective interference with the optical systems.

The top of the tank is covered with a Styrofoam ® slab to reduce evaporative loss of the

41
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bath liquid• Bridge supportsare threadedontoupperand lower supportrods. A wide

varietyof sharp-edgeddisk supportsof variousmaterials,sizesandrecedingangleswere

machinedalongwith sphericalcapsof variousmaterials,wire rings,anddisksmountedon

cantilever arms. The support structuresare easy to fabricate, and new supports are

machinedasneededfor experiments.For mostexperiments1 cm stainlesssteelsharp-

edgeddisksupportsareused,althoughacantileverarmwasusedfor force measurements

andsphericalcapsusedto studymovingcontactlines.

1\ iv1

GLASS

WALLS

\ | |

I !

ll_I V2

\
ALUMINUM

BASE

Fig. 3.1. Plateau Tank Apparatus: (1) upper vertical displacement motor V1 (2) upper

rotational motor (3) upper lateral displacement motor L1 (4) oil injection line (5) upper
spindle (6) upper feed disk (7) lower feed disk (8) slip-ring gasket (9) lower rotational

motor (10) lower lateral displacement motor L2 (11) lower vertical displacement motor

V2 (12) cooling coils (13) bath circulator (14) heating coil
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3.1.2 Temperature control

A small heater was used for increasing the bath temperature, and a copper coil

attached to a cold water source was used to lower the bath temperature. Temperature

measurements showed that the temperature of the bath could be held steady to 0.05 °C

over an 8 hour period, and 0.01 °C over a 30 minute period (see Figure 3.2). The

temperature was measured with a platinum resistance thermometer with a precision of

0.001 °C. Typical experiment times were 2 hours or less. A filtering pump was used to

both stir the bath and to remove any foreign material in the bath solution. All three (pump,

heater and cooling coils) were turned off during experiments. A circulator was not used as

it was impractical and unnecessary for the large volume of bath liquid. The temperature

was selected to be near the ambient temperature of the room, approximately 22°C, and

schlieren images showed that bath temperature nonuniformity is negligible. If the

temperature drifted out of the allowed range (AT = 0.01°C) during an experiment, the

experiment was stopped and the bath brought to the correct temperature before resuming

the experiment. A change in temperature of AT = 0.01°C corresponds to a Bond number

change of ABo = 1.5x10 -4.

The stepper motors draw large amounts of electrical current, and correspondingly,

tend to generate large amounts of heat. The lower support rod is directly coupled to one of

the lower stepper motors, and heat generated by this motor will rapidly conduct up into the

bath. The other motors are not as well coupled to the bath, and do not greatly contribute to

the heat flux. The heat will cause the bath fluid in the vicinity of the support rod to expand,

generating both convective flow in the bath fluid centered around the liquid bridge, as well

as changing the overall temperature of the bath. Thus it is important to monitor the

generation of heat by the motors. The change in density of the bath can be easily visualized

with schlieren imaging. When schlieren fringes appear, the experiment must be stopped

and the motors allowed to cool down, a process that can take several hours. A circulation

fan or small blower placed near the lower motors would help alleviate this problem.
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0.2°C 10 min

I

Figure 3.2. Time variation of bath temperature.



3.1.3 Liquid bridge manipulation

The liquid bridge was formed and manipulated using computer control.
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The

system involves a PC (133 MHz), which communicates with indexers for the motors

(Compumotor ®, series AT 6400). The indexers communicate with the AC power supply

encoders for the motors, which drive linear tables (Parker ® systems, Daedal division). Our

system has 2 AT6400 cards, one driving 4 motors and the other driving 2 motors from a

separate indexer. The execution time between consecutive commands is approximately 2

milliseconds according to the manufacturer. The combination of the motor resolution and

the screw thread in the linear tables provides a resolution of 125000 steps/inch. In addition,

there is a joystick interface which can control up to 4 motors simultaneously. The stepper

motors and linear tables were found to have completely repeatable motion, i.e. no

measurable backlash. Liquid bridges are created by manual injection of silicone fluid

(nominally) with a microsyringe (Hamilton Gastight ® series, 50ktl and 500 _1) while the

stepper motors separate the support disks. Typical bridge volumes are of the order 2 cm 3.

Past attempts to automate the syringe failed for various reasons. A glass syringe offers

precision, but small angular misalignments between the barrel and plunger caused sticking

and the potential for breakage. A plastic syringe could accommodate misalignment, but the

rubber-tipped plunger initially deforms instead of travels, resulting in inaccurate volume

injection.

Quasi-sinusoidal motion for a fixed period and acceleration is performed by

suitable adjustment of velocity rate as well as distance traveled (see Figure 3.15). The

particular frequency and amplitude of vibration chosen depend on the particular experiment

being performed. Either upper or lower or both support disks may oscillate axially or

laterally, in or out of phase, depending on the experiment.
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3.2. Coherent Fourier Imaging Optical System

A coherent imaging optical system that operates on the Fourier transform of the

image of a liquid bridge silhouette has been developed. By blocking the zero frequency, or

dc component of the optical scene, only the high-frequency components corresponding to

edges are passed through the system. This approach was used because one of our

objectives was to investigate the importance of contact line and angle dynamics on the

characteristics of dynamic liquid bridges. Optical techniques allow a higher measurement

precision. In many cases, certain real-time measurements needed to be automated. By

performing some of the image processing optically, the need for expensive and specialized

image processing hardware is eliminated. Finally, in experiments involving liquid bridges

undergoing periodic time-dependent deformations, vibrational mode information can be

directly obtained from the transform plane.

Because the liquid bridge is elevated from the surface of the optical bench by at

least 20 cm, the optics are mounted on elevated optical platforms which are rigidly bolted

to the optical bench. This increases the stability of the optical components. The optics are

mounted on Data Optics optical rails and 3-axis carriages. The bridge is viewed in 2

orthogonal directions (Figure 3.3). In each case, the bridge is viewed by a CCD camera

(Burle ®, model TC351A) equipped with a 18-105 mm zoom lens. In one view, a HeNe

laser is used as the light source, and in the other, an incoherent white light source with a

diffuser is used as the light source. The coherent view consists of the laser (15 mW

Spectraphysics Stabilite ®) and a 8 micron pinhole in a spatial filter. The light is collimated

before passing through the Plateau tank. The light is then subjected to high pass frequency

filtering [267,268] to pass only edge information from the bridge silhouette. Light

refracted by the liquid bridge is allowed to escape and does not substantially interfere with

the image. Magnification is supplied by a piano-convex lens and a telephoto lens system

attached to the CCD.
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Figure 3.3. Optical layout (top view)

The images from the cameras are digitized by a frame grabber (Coreco TCX). The

frame grabber can capture up to 1024 x 1024 x 8 bits for each frame. The images are

currently stored and manually processed using a computer program to measure relevant

parameters. Upgrading the data acquisition system will allow for real-time automatic data

acquisition and image processing. The magnifications range from 10x to 700x for the

coherent view, and 4x to 1 lx for the incoherent view.

In order to fully exploit the capabilities of the Plateau tank, it is desirable to design

an optical system that can resolve features at least on the order of tens of microns. The

optical system chosen is similar to a so-called "4-f system," with a few minor differences,

In a 4-f system, the object plane is located a focal length in front of a convex lens, which

produces the Fourier transform of the object a focal length behind the lens. q_his Fourier

plane is located a focal length in front of a second convex lens, and it retransforms the
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transformplane,producingafiltered image,a focal lengthbehindthelens. This system,

whileconceptuallysimple,wasnotsufficientto meetcurrentneeds.Sphericalaberrationis

large unlessspecial lensesareused. Becauseall focal lengthsare equal, there is no

magnificationof eitherthetransformplaneor thefinal image.Thelayoutof the4-f system

hasbeenalteredto reducetheseproblems.By splitting eachconvexlens into 2 piano-

convexlenses,sphericalaberrationis suppressed. By makingthefront andback focal

lengthsdifferent, thetransformplanecanbemagnified. The secondhalf of the optical

system was used to magnify the object plane. Resolution is ultimately limited by

aberrationspresentin thePlateautankitself. Fortunately,aberrationscanbe reducedto an

acceptablelevel withoutexpensivemodificationof thetankwalls (e.g.usingoptically flat

windows).

3.2.1 Alignment procedure

The complete optical system contains approximately 14 surfaces, including the two

walls of the glass tank that deform due to hydrostatic pressure. In order to align so many

surfaces it is necessary to eliminate all mechanical reference surfaces, i.e. optical mounts.

The first step is to define the optical axis. The optical axis was true to _+0.5 mm at 5 meters

(0= +_0.012 seconds). The next step centers the mirrors to the optical axis.

Once the mirrors have been centered, the optical elements can be aligned. The first

object to be aligned is the Plateau tank itself. The tank is the source of most of the

aberrations due to the fact that it is not a precision piece of optical equipment. However,

with care, the aberrations can be reduced to an acceptable level. Alignment of the tank is

achieved by observing both the portions of the laser beam reflected from each surface and

the deviations of the transmitted beam. By adjusting the tank, the reflections are moved

until they closely coincide with the incident beam. Adjustment is achieved by (l) gross

placement of the tank, including rotation perpendicular to the optical axis, (2) "shimming"

the tank to adjust rotation along the optical axis, and (3) adjusting the walls of the tank to
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account for non-parallel sides. A c-clamp was constructed to compensate for the sag

caused by the hydrostatic pressure of the bath liquid on the walls of the tank.

When the tank is properly aligned, the optical elements are placed in the beam line,

one at a time, and adjusted until reflections from the surfaces are coincident with the

incident beam. Primary adjustments include translation in the X-Y plane (perpendicular to

the optical axis), rotation and tilt. Usually, a small "shim" is placed to hold the desired tilt,

either of the optical element, or of the entire mount. By bringing the reflections and

refractions of the laser into coincidence, error due to misalignment is minimized. After the

system has been aligned, the optical elements are locked in place.

Figure 3.4. Focal spot at Fourier plane before alignment (no bridge present). Scale is
approximate.

An image of the Fourier plane before aligning the tank and without a liquid bridge

present is shown in Figure 3.4. This is an aberrated image of the pinhole. There is clearly

some residual astigmatism and coma present. To locate the source of the aberrations, we
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constructedaMichaelson-Morleyinterferometerto individually testeachopticalelement.

By placingeithera lensor anoptical flat in oneof thearms,while leavingtheotherarm

empty,theresultinginterferencefringesshowhowmanywavesof differentaberrationsare

presentin theopticalelement.A reflectiveball, thecenterlocatedin thefocalplaneof the

opticalelement,replacesaflat mirrorwhenalensis in anopticalpath. Thismethodof lens

testing is calledautoreflection,asopposedto retroreflection,which placesa reflective

surfaceatthefocalplane.Autoreflectionispreferredbecausenon-rotationallysymmetric

errorswill bepreservedin the wavefront.Each lenshasbeenquantitativelylabeledand

none show signs of coma or astigmatism, which are the primary non-symmetric errors.

Figure 3.5 is an example of the interferogram obtained. Spherical aberration will always be

present, but by carefully choosing two complementary lenses, the spherical aberration can

be suppressed. Therefore, the primary source of aberrations is astigmatic and comatic

curvature of the glass walls of the tank due to the hydrostatic pressure of the bath liquid.

An image of the wavefront with the system elements properly aligned is shown in Figure

3.6. The astigmatism and coma have been greatly reduced. An image of the Fourier plane

after all the elements have been aligned is shown in Figure 3.7. A typical image of the

bridge supports is shown below in Figure 3.8. Features on the order of several tens of

microns can be resolved. The edge of the support structures is clearly delineated by the

dark stripe running through the bright region. This stripe is actually composed of very high

spatial frequency alternating light and dark strips which the system cannot resolve.
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Figure 3.5. Interferogram of a lens

in the optical system

Figure 3.6. Shear interferogram of

wavefront after alignment

Figure 3.7. Focal spot at Fourier plane after alignment (no bridge present). Scale is

approximate.
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Figure 3.8. Effect of frequency filtering (no bridge present)

3.3. Materials

Table 1: materials properties, s.g. = specific gravity at 25°C, n = index of refraction at

25°C (sodium line, 589.3 nm), _, = surface tension (dyn/cm), E = coefficient of expansion

(cc/cc/°C). Sources: I Dow Corning, 23M, 3CRC Handbook of Chemistry and Physics.

*yof0.1 g FC-171/100 g distilled water. Note: CRC data at 20°C.

Material s.g. n y

5cs silicone fluid I 0.913 1.3960 19.7 0.00105

100 cs silicone fluid 1 0.965 1.4030 20.6 0.00096

Fluorad (FC- 171 )2 1.4 - 20* -

Fluorad (FC-721)2 1.5 1.36 l I -

Fluorad (FC-723) 2 1.7 - 11 -

Methanol 3 0.7931 1.3290 22.61 -

Water 3 0.99823 1.33335 72.75 0.00483
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The materials used for the liquid bridge and the surrounding bath needed to satisfy

the several constraints. Most importantly, the two liquids must be immiscible. In order to

avoid issues involving hazardous materials, organic liquids such as benzene and chemical

solvents such as xylene were avoided. For practical reasons we chose water and methyl

alcohol as one fluid phase (see [51 ] for some other suggested bath liquids]). Other liquid

bridge experiments have used Dow Corning series 200 fluids, a series of hydrophobic

polydimethylsiloxanes available in various viscosities. These fluids have several

advantages. They are, non toxic, and stable. We found, however, that silicone fluid in

contact with air and a water-methanol solution for extended periods of time (for example

oil floating on the surface of the bath) will polymerize. Because the interfacial energy is a

difficult physical quantity to measure accurately, it is an advantage to have a value that does

not appreciably change from one experiment to another. Because the silicone fluids readily

adhere to any surface they come in contact with, the silicone fluid was used as the bridge

fluid, rather than the surrounding bath fluid. This way the silicone is contained, and in the

case of the bridge breaking, the drops of oil will adhere to the glass walls of the tank and

not interfere with subsequent experiments.

The only decision left to resolve was the viscosity of the silicone oil. Because the

water-methanol solution has a viscosity close to 1 cs, a silicone fluid with a viscosity of

100 cs, and another with a viscosity of 5 cs was selected. In this way regimes where the

relative viscosity is large or small [62] can be investigated.

Although the silicone oil came provided with a materials data sheet from Dow

Coming, much time was spent studying the behavior of the silicone fluid in contact with

various materials. Because control over how the oil wet the support disks was important,

disks were machined out of many different plastics, as well as aluminum (T6061), free-

machining brass and stainless steel (303A). The long term behavior of the silicone oil in

contact with polymethylmethacrylate (PMMA), polycarbonate, nylon 6/6, nylon 6/12,

polytetraflouroethylene (Teflon), high-density polyethylene, polystyrene, polyurethane,
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polyvinylchloride andDelrin was investigated. In all cases,the surfaceof the plastic in

contact with the oil degradedover time until the oil no longer wet the surface in the

presence of the water-methanol solution. The time for this to occur ranged from hours

(polycarbonate) to weeks (Teflon). Concerning the metals, the brass turned the water-

methanol solution cloudy in a day, and the aluminum had the tendency to polymerize the

oil, transforming it into a gel-like substance in the presence of the water and methanol.

Although the oil exhibited wetting problems when in contact with the stainless steel after an

extended period of time (several months), the fact that the steel could be machined to a

much sharper edge than the plastics led to our decision to select stainless steel as the

material for the support disks. The top surface of the steel can be coated with a surfactant

(FC-171) and the underside with an anti-spread fluid (FC-721 or FC-723) to enhance the

contact line pinning. Alternatively, by gently abrading the surface of the support disk, the

oil is exposed to a fresh surface and again preferentially wets the surface of the support

disk.

3.4. Physical measurements/calibrations

3.4.1 Calibration of a density hydrometer at various temperatures

Accurate and precise knowledge of the bath and bridge density is crucial if we are

to control the Bond number at low magnitude (Bo < 0.1). Therefore, an experiment was

undertaken to calibrate our density hydrometer over a range of temperatures. Although a

pycnometer would provide much higher accuracy and precision, it is only calibrated for

one specific temperature. Silicone oil was used as a density standard, and the condition of

neutral buoyancy used to compare measured densities of the bath with independently

measured densities of the oil. Use of the hydrometer over a temperature range (20 °C -

30 °C) is the primary concern. The hydrometer was an Ertco ® density hydrometer, 13"

long, with 0.0005 gradations. The rated accuracy is 2% at the standard temperature, but a

substantially greater accuracy over a large temperature range was required. To take a
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reading, the hydrometer was placed in a 500 ml graduated cylinder. A platinum resistance

thermometer was placed in the Plateau tank. Although the lower limit of resolution of the

thermometer is 0.001 °C, local temperature fluctuations forced a practical resolution of

0.01 °C.

The temperature dependence of the silicone fluid was measured independently

from the hydrometer, using the Archimedes method to weigh an aluminum block

submerged in the oil at various temperatures. This method gave the coefficient of

expansion for silicone oil as Ap/AT = -9.56x10 -4 g cm -3 K -1 (see Figure 3.9). This result

is less than a 0.1% difference from the published result by Dow Corning ®. The

Archimedes method was not used to calibrate the hydrometer directly because the

hydrometer was too large for the apparatus. The Plateau tank is kept to a given

temperature, within 0.01 °C, and the density of the bath is adjusted by adding either

deionized water or methanol until a pulled bridge of slenderness 3.12 is stable. The bridge

slenderness was chosen to be as close to the Rayleigh limit as practical. At this point, the

density of the bath is nearly equal to the density of the oil, and a density measurement of

the bath is taken and compared against the calculated density of the oil (see section 5. I for

more detail). The bath mixture was mixed continuously, except when pulling a bridge.

Homogeneity was checked using schlieren coherent imaging. Any inhomogeneities in the

bath composition create inhomogeneities in the local index of refraction, and thus, create a

local lensing effect, which can easily be observed. The graduated cylinder was first filled

with bath liquid, then the liquid was expelled as waste to eliminate compositional

differences between the fluid in the bath and the fluid in the drain tube, or residual fluid in

the cylinder. The graduated cylinder was again filled, and a density measurement taken.

The ratio of calculated to measured density over a range of temperatures is shown in Figure

3.10. Within the precision of the hydrometer, the variation of temperature did not affect the

accuracy of the hydrometer. The data taken by comparing the measured density of the oil
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to the measureddensityof thebath is usedto increasetheaccuracyof the hydrometer.

Consequently,thedensityof thebathis knownto betterthanO.1%.
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Because the conditions for neutral buoyancy require a density difference of exactly

zero, the time required to achieve exact neutral buoyancy is unacceptably long. In addition,

the limit of precision of the hydrometer places a lower limit on how close to neutral

buoyancy can actually be measured. Equal numbers of readings were taken with the oil

slightly lighter than and slightly heavier than the bath. In this case it was found that the

density difference was equal to the precision of the hydrometer. In order to ensure that the

temperature of the measured fluid stayed constant over the period of the experiment, the

temperature of the bath was kept close to the ambient temperature of the room. If many

schlieren fringes appeared when the solution was poured back into the bath, the trial was

repeated. This guaranteed that the temperature of the graduated cylinder did not

significantly affect the temperature of the bath portion being measured.

3.4.2 Evaporation rates of silicone oil and bath liquid
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Because the bath liquid contained a large fraction of alcohol, it was necessary to

determine if the evaporation rate was large enough to significantly alter the bath density

over the course of an experiment. We also wished to know if the silicone oil was volatile.

In addition, we desired to know if the silicone oil was partially miscible with the bath

liquid. To measure the evaporation rates of the various viscosity silicone oils, we merely

filled beakers with the fluids and periodically weighed them. We measured the mass, then

placed the sample in a vacuum, and weighed the sample again (see Figure 3.11). This

would tell us if any water had dissolved into the silicone oil, as the water and any other

volatile liquids would boil off under a vacuum. Only the lowest viscosity silicone fluid

(g = 0.65) had any appreciable evaporation rate. The amount of dissolved water decreases

extremely rapidly with increasing viscosity, and the silicone fluid itself does not evaporate.
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For measuring the evaporation rate of the bath fluid, the fluid was brought to a

desired density, close to typical experimental values, and the tank left to sit overnight. The

next day, the amount of liquid necessary to bring the bath to the density it had been

previously was determined. It was found that it was necessary to cover the top of the tank.
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By covering the tank with Styrofoam ® , covering the through holes with plastic sheeting,

and lowering the temperature of the bath, only 200-300 ml of methanol per day was

needed to re-adjust the density. This represents a fractional volume change of 7.5* 10-3.

Thus, frequent density measurements during the course of an experiment were necessary

to ensure the composition of the bath remained within acceptable ranges.

3.4.3 Interfacial tension measurements

The importance of obtaining an accurate value for the interfacial energy as possible

cannot be overemphasized. The largest contribution to the error in Bond number arises

from the interracial energy. In addition, because the interfacial energy is small (roughly 15

erg/cm2), even small values of 5), produce a large error. Because the interfacial energy

changes with composition (density) and temperature, it was necessary to obtain, in addition

to an accurate value of 7 at neutral buoyancy, the relationship between the interfacial energy

and the bath density (composition).

A variety of techniques are available for surface tension measurements which vary

in both accuracy and complexity [246]. There is no standard method for isopycnic liquids.

We selected those methods that require a minimum of apparatus while still providing

accurate values of the interfacial energy. Three methods involved the balance of

gravitational and interfacial energies. These methods are the drop weight method, the

pendant drop shape method, and a method utilizing the deflection of a cantilever arm in

response to the interfacial energy. A fourth method compared experimental values of

bridge stability to numerical computations of the stability limits of axisymmetric bridges

between unequal concentric disks to obtain ), [265]

The drop weight method is perhaps the simplest method to carry out in a

laboratory. Tate's law [266] is used: W = 2nrff, where f is a correction factor that

accounts for the fact that not all the drop will detach from the dropping tip. The correction

factor f is a function of tip radius divided by drop radius, or, since the drop volume is more
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conveniently measured, V01/3. In our case W, the weight of the drop, was ApV0.

Correction factors for mercury in air were given by Wilkinson and Aronson [ 197].

The pendant drop technique is slightly more complex, but still requires a minimum

of apparatus. In this case, a static hanging drop was photographed, and shape parameters

directly measured from the picture. Instead of numerically fitting the entire shape, we used

correction factors given by [197, 246]. In this case the surface tension is given by

7 = Apg(de) 2/H where de is the equatorial diameter, and H is the correction factor, a

function of ds/de (see Figure 1.5).

The force balance method is the only method of the three that can directly measure

the value of interfacial energy. A detailed explanation of the force balance apparatus is in

chapter 7. By assuming the cantilever arm acts as a weak spring, measuring the deflection

of the arm due to the presence of the bridge serves to measure the interfacial energy (see

Figure 7.1).

The fourth method relies upon numerical calculations of the stability limits of liquid

bridges held between unequal coaxial circular disks (see Chapter 5). On the lower stability

boundary there is a cusp point. The value of A, Ac, at the cusp point depends sensitively

upon Bo. For A > Ac, the bridge will neck down near the upper support disk. If A < Ac,

the bridge will neck down near the lower disk (Figure 3.12). By adjusting the bath density

until the measured value of Ac matches the numerically calculated value for a given Bo.

The value for the interfacial energy can be then be found from the Bond number.
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Figure3.12. Differencein neckingbehavior. (a)A < Ac, (b) A > Ac.

3.4.3.1 Procedure

3.4.3.1.1 Drop weight

The same procedure was used when the silicone was heavier than or lighter than the

water-methanol solution. First, a 100g solution of methanol and water was prepared by

weight percent utilizing an electronic scale accurate to 0.1 rag, producing a solution accurate

to 0.001%. Later, the weight percent would be converted to tool fraction, as well as a

density [g/cm3]. The receptacle, a rectangular cuvette, was first thoroughly washed with

Tergazime ® detergent, followed by purified water, and lastly, copious amounts of acetone.

The cuvette was allowed to dry, then filled and covered with a cap which contained a small

hole through which the needle could be inserted. The evaporation rate of the solution was

measured over a 3 minute interval. The dropping tip was a 20 gauge needle (diameter

0.09 cm) with the end cut square to the sides. Hole integrity was ensured by inserting a

wire into the hole at the time of cutting, to prevent distortion. Injection was achieved
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manually via a syringeattachedto a screwdrive. By turning a long threadedrod, the

syringewould injectfluid throughplastictubinginto theneedle.Thesyringe,tubing,and

needlewereconnectedwith Luer Lock®. Theneedlewasanchoredin placeby aclamp,

which wasattachedto a sturdybaseto eliminateunwantedvibrationor movement.With

careful manipulation,dropping times of up to 5 minutescould be achieved,ensuring

maximum drop weight. Although no temperaturecontrol device was used, ambient

temperaturevariation wassmall enough(approx.0.5 °C) to ensurethat the interfacial

tensiondid not vary appreciablyover the time of theexperiment. The droppingtip was

alignedby eye,to benearvertical. Theneedlewasloweredinto thesolution,severaldrops

were formedand weighed. The time of theprocedurewasnoted,andevaporationrates

were accountedfor in the final weight. This was repeatedseveral times to obtain a

statisticalaverage.Dependingon therelativedensitybetweenthesilicone fluid andthe

methanol-watersolution,eithersiliconefluid orsolutionwasinjectedinto thecontainer.If

the methanol-watersolutionwasto be injected, The injecting syringeand tubing were

emptied,the apparatusfilled with anew solutionwhich was thenexpelledaswaste,and

moresolutionintroducedinto the injectionsystem.

3.4.3.1.2 Pendantdrop

The photographswere taken using a standard35 mm manual camerawith an

85mmf#/1.2 lens. Image distortion was checked by imaging a grid, and was found to be

negligible over the field of view occupied by the drop. Enlargements were done "in-

house," with end magnifications on the order of 40x. Shape parameters were measured,

and the interfacial tension calculated.

3.4.3.1.3 Cantilever arm

We examined the forces exerted by right circular cylindrical bridges with different

slenderness, and measured the displacement of the lower disk from its initial position.
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Siliconeoil wasmanuallyinjected,andtheupperfeeddiskmoveduntil thebridgewasa

right circular cylinder. Theslendernesswasmeasureddirectly from theviewing monitor

with a setof calipers,andthe displacementof the lowerdisk measureddirectly from the

chartrecorder.Forfightcircularcylinders,afteraccountingfor buoyancy,thetotal forceon

thelowerdiskreducesto alineardependenceupontheradiusof thediskandtheinterfacial

energy. Becausetheradiusof thedisk is aconstant,thedisplacementof the lower disk is

proportional to the interfacial energyonly. This alsoallows us to measurethe value of

interracialtensionatvery low Bondnumbers,whichotherwisemustbemeasuredby more

involved techniquessuchas the Wilhelmy plate method,or optical methodsbasedof

eigenfrequencyexcitations[246].

3.4.3.1.4 Stabilitylimits method

The density of the bath was adjusted until the experimental value of Ac

correspondedwith theknowntheoreticalvalue.Whentheproperslendernesswasreached,

the density wasmeasuredwith the calibratedhydrometer,and the value of interfacial

energywasadjusteduntil thecalculatedBond numberwasequalto +0.100. For Bo - -

0.100,A slightly differentmethodwasused.Becausethereis noAc, anslendernessnear

the maximum stableslendernesswasusedto adjustthe density of the bath. Care was

takento be in aregionwherethevaluedV/dA wasnot large,assmallerrorsin slenderness

would thencauselargeerrorsin minimumstablevolume.
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Figure 3.13. Measurements of the interfacial energy between silicone oil and a water-

methanol bath. (a) 100 cs oil, hanging drop and drop weight methods. (b) 5 cs oil,

hanging drop and drop weight methods. (c) 100 cs oil, force balance method. (d) 5 cs oil,

liquid bridge stability method.

Results of the measurements at various concentrations of methanol are shown in

Figure. 3.13 a-d. Figure 3.13 a and b shows the measured value of the interfacial energy

between 100 cs and 5 cs silicone fluid and various concentrations of methanol in water



usingthedropweight andhangingdropmethods.

around Ap = 0. Most data points were taken
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Note theapparentdivergencecentered

using only the drop weight method.

However,pendantdropsweremeasuredat variousconcentrations(0%, 50%,and 100%

water),andthevaluesmatchedthosegivenby thedropweightmethods,agreeingto within

7%. To obtain a valuefor the interfacial energy,a linear interpolationwasusedthrough

neutralbuoyancyandthe affectedpoints ignored. This givesa valueof 7 = 14.5+_0.5

dyn/cmatBo = 0, T -- 22.0 °C for the 5 cs oil and 25.6 _+0.5 dyn/cm at neutral buoyancy

for the 100 cs oil.

Note that these methods fail near the neutral buoyancy point. This is because these

methods use a balance of gravitational and interfacial energies. This is not a physical effect.

Approaching neutral buoyancy, the drop size increases exponentially, with a corresponding

increase in dropping times. The extreme points, those closest to neutral buoyancy,

correspond to drop volumes on the order of 10 cm 3.

Figure 3.13 c shows data taken for 100 cs fluid using the cantilever arm method.

Note that the data trends to an asymptotic value as the slenderness increases. This is

because small errors in bridge shape at small slenderness produce large changes in the

pressure as the radii of curvature are small. This method produces an interfacial energy of

21_-,_-_0.5dyn/cm (see chapter 7 for a detailed error analysis).

Figure 3.13 d shows data taken for 5 cs fluid using the method of bridge stability.

Again, the data diverges around the neutral buoyancy point. This method produces an

interfacial energy of 14.5 _-+0.5dyn/cm

3.5. General experimental techniques

There are three basic experimental procedures that were used for all of the

experiments performed, with the exception of the force balance, which will be discussed in

chapter 7. The first step in every experiment is to create a desired Bond number. The

second is to create a bridge with a desired slenderness and volume. Finally, methods used
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to detectwhen the bridge crossesa static stability limit will be discussed,as well as

methodsusedto oscillatethesupportsdisksfor dynamicalexperiments.

3.5.1 Bond number control

There were different procedures employed for creating a specific non-zero Bo, and

for creating a Bo as close to zero as possible. In order to create a given non-zero value for

Bo, all that needed to be done was to adjust the density and/or temperature of the bath until

it reached a suitable value. The values for disk radius and gravitational acceleration were

constant. Previous measurements were made of the temperature dependence of the density

of the silicone oil, calibration of the hydrometer, and the dependence of the interfacial

energy upon composition of the bath. A Mathcad ® routine was used to calculate the Bond

number given a measured density and temperature of the bath, using all of the correction

factors. The density was adjusted until the desired value of Bo was produced. In general,

the temperature was only adjusted if it was much different from the ambient room

temperature. However, adding different liquid to the bath would slightly change the

temperature, so it was necessary to keep the temperature at a constant value during this

procedure. After the desired (measured) density was determined, methanol and/or water

were added until the density as measured by the calibrated hydrometer was correct. This

method works very well for large values of Bo, Bo > 0.01. It is helpful to realize that if the

bath solution were removed, leaving the disks in air, Bo = 13.

If we desired to create a Bo as close to zero as possible, it was not possible to do

this by simply measuring and adjusting the density of the bath. This is because due to

measurement error, the smallest directly measurable A9 is 0.00025, corresponding to a Bo

of 10 -2. (see below), To create smaller values of Bo, we used the fact that a V = 1 bridge

of slenderness rt is stable to axisymmetric perturbations only if Bo = 0. This allows us to

be limited by the (much smaller) error of the stepper motors and a microsyringe, rather

than a hydrometer and interfacial energy measurements. However, the time necessary to
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createadensitydifferenceof exactlyzerois unacceptablylong. As acompromise,a V = 1

bridgeof slenderness3.12wasusedto adjustthedensitydifference,thedensityof thebath

wasadjusteduntil thebridgewasstableandnearlycylindrical. This placesanupperlimit

of Bo at 2.5*10-4. Thefact thatthebathvolumewassolargefacilitatesthisprocedure,as

densityadjustmentson theorderof onepart in 107arepossible.

3.5.2 Creating a bridge of known A, V

Once the bath was brought to the desired density and the temperature stabilized by

adjusting the heating element or cooling coils, a bridge of desired slenderness and volume

was created. A Mathcad ® routine would determine the number of steps each upper and

lower support disk stepper motor would need to take, and the volume in milliliters was

calculated as well. The bath stirrer, heating coil and cooling coil were turned off. This

would occasionally cause the temperature to drift. The effect of a temperature change on

Bond number could be calculated with the Mathcad ® routine. If the change in temperature

was small, a few hundrethds of a degree, the Bond number would not measurably change

given the error in density measurement. The computer controlled motors would output the

distance traveled (in steps), the velocity (in steps/s) and the acceleration, in steps/s 2. This

information was displayed on the computer screen as part of an interface program. Each

motor was capable of independently moving a certain distance at a certain velocity and

acceleration. The choice of velocity is a trade-off between time taken to form a bridge and

fluid flow perturbations caused by the disks moving within a viscous bath liquid. To start,

the support disks were slightly separated from each other to ensure that oil was in fact

flowing out of the feed disk. This small separation was measured to be on average 0.002

cm. A V = 1 bridge of slenderness 0.002 has a volume of 15 !al. Originally, oil was

injected by a motorized syringe as the support disks were separated, but it was found that

the deformation of the rubber tip of the plunger caused an incorrect amount of oil to be

injected. Therefore, injection was performed manually with a calibrated microsyringe.
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Oncethebridgewascreated,othervaluesof slendernessandvolumecould becreatedby

movingthesupportdisksand/orinjectingor withdrawingoil. TheMathcadroutinewould

calculatethenewslendernessandvolumegivenaninputseparationdistanceof thesupport

disks (in steps)anda volumeof oil in microliters. Figure3.14showsa samplepaththat

was followed to createabridgeof an initial configuration(Ai, Vi) in a solid line, andthe

dashedlines indicatepossiblepathsto approachthestabilitylimit (Seechapter4).
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Figure 3.14. A sample path followed in A-V space. Thin solid line: Bo = 0.1. Dashed

line: Bo = 0.

3.5.3 Dynamical procedures

The main procedure involved a sinusoidal lateral or axial oscillation of the disk

supports. A computer program controlled the oscillation of the disks approximately

sinusoidally by adjusting the amplitude and velocity of the rate of travel to achieve a

constant acceleration at different frequencies.
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It was necessary to first calibrate the stepper motors.

problem: given a "frequency" f and an "acceleration" a as
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This is a 4-dimensional

input, calculate the true

frequency v and true amplitude A. Given input values of f and a, travel distance in units of

steps and velocity in units of steps/s were calculated, d = _a/f 2, v = a/f. The scale factor

is used to control the overall displacement range, and is held constant. The values of

distance and velocity passed to the indexers. The indexers would command the encoders

to move the motor a specified number of steps with a specified maximum velocity using

the default acceleration/deceleration. Schematic velocity versus distance and distance

versus time plots, for clarity, are shown in Figure 3.15. Calibration runs were performed

by keeping either the input acceleration fixed and varying f or by keeping f fixed and

varying a. Given a constant input acceleration, the relationship between f and v is shown

in Figure 3.16. Four different f's were chosen, and the true frequency measured as the

acceleration varied (Figure 3.17 a-d). The frequency dependence of dv/dA was measured

as well (Figure 3.18). Lastly, the true acceleration was calculated for different input

accelerations as f was fixed (Figure 3.19). Three features stand out. First, given a constant

acceleration, co tends to an asymptotic limit around v = 2 Hz. A quadratic fit of the data

was used with the understanding that the fit does not apply at frequencies close to this limit.

Thus, we were limited to a study of the fundamental frequency, although a first harmonic

may be generated if the resonance occurs at a low enough frequency. The next feature is

that the frequency does depend upon the acceleration. This dependence is weak enough to

assume a linear dependence at small accelerations. We assumed the following form of the

true frequency and acceleration:

v = v(a,f) ---ml(a) * v(f) + Cl

A = A(a,f) = m2(v) * A(a) + c2

(3.1)
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Figure 3.18. Change in dv/dA versus v

which gives the following formulae for the true frequency and acceleration in terms of the

input frequency and acceleration:

v = (-4.742"I0-3a + 1.488"10-3)[-2.509"10-3f 2 + 1.369"10-1f + 5.554"10 -2] (3.2)

A = (-1.2295" 10-3v + 2.743" 10-2)a + 3"10 -4

These can be inverted to give an input set (f,a) to create a desired (v,A). Note that it is

more important to have accurate and precise values for v than for A for purposes of

measuring the eigenfrequency.
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Figure 3.19. Variation of A with a and v.

3.6. System error

Here an analysis of the systematic error present in our apparatus is presented.

Some of the sources of random error are discussed as well, and the magnitude estimated.

The error sources affect physical measurements/calibrations, Bond number calculations,

and static and dynamic parameters of liquid bridges.

3.6.1 Density

The calibration procedure produced a calibrated instrument accurate to

_-+0.00025 g/cm 3, the precision of the instrument. This corresponds to 5p/p = 2.5 * 10 -4 at

typical values of density.

3.6.2 Disk radius

The calipers used to measure the disk radius are precise to 0.02 ram. Therefore, for

1 cm radius disks, 5R/R = 2"10 -3.

3.6.3 Interracial energy
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To check our measurement technique, the pendant drop and hanging drop methods

were performed on pure silicone fluid in air. Both methods agreed well with data provided

by Dow Corning. The pendant drop method tended to give a lower value of the surface

tension, while the drop weight method tended to give a slightly higher value. For silicone

in air, the hanging drop methods gives a surface tension value of 18.06 _+0.54 dyn/cm for

different measurements of the same drop, and 17.17 _+0.39 dyn/cm for measurements of

different drops. The drop weight method gives 21.29 _ 0.33 dyrdcm for measurements of

different drops, and there is negligible error due to angular displacement. The needle tip

was cut square to within 2 degrees, as measured by enlarged photographs. The eccentricity

of the inner diameter of the needle was measured to be exactly zero, and the eccentricity of

the outer diameter of the needle was measured to be 0.011 + 0.007 (see Figure 3.20). Note

the outer perimeter of the needle is not exactly circular. Error as a result from drop-to-drop

variations is 2.28%, and error due to measurement of a single drop is 3%.

The values of y measured in the Plateau tank were used instead of the hanging drop

and drop weight values as they were representative of the actual experimental environment.

For 5 cs oil, the measurement error corresponds to y = 14.5 _+0.5 dyn/cm. For the 100 cs

oil, the measurement error corresponds to y = 25.6 _+0.5 dyn/cm.
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Figure3.20. Magnifiedimageof droppingtip.

3.6.4 Error in "g"

The accepted error for "g" is 0.5 cm/s 2, which corresponds to 5g/g = 5.4* 10 -4.

3.6.5 Bond number

The uncertainty of the Bond number is the most important to know. The error is

calculated with two independent methods. The first method uses the uncertainty in density,

disk radius, interfacial energy, and "g" to calculate the uncertainty in Bond number.

Bo )
(3.3)
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This gives 5Bo/Bo = 3.45x10 -2. The largest error is in interfacial energy, followed by

error in disk radius, then density, and uncertainty in "g" is last. Note that this error is in

many cases larger than typical experimental values of Bo. The importance of using the

method of Rayleigh length bridges becomes apparent.

The method of determining the error present in this case uses the relation between

maximum slenderness of a right circular cylindrical bridge as a function of Bond number

to calculate the error in Bo.

Amax: (3.4)

For Amax = 3.12, Bo = 2.4x10 -4. To calculate the error in Bo with this method, we need

to calculate the error in A and V.

3.6.6 Error in A, V

The stepper motors provide a 48750 steps/cm displacement. Thus, the primary

uncertainty in A is due to the error in disk radius and the error due to an initial disk

separation. The initial disk separation was measured to be, on average, 0.02 mm. The

stepper motors had repeatable motion as verified under high magnification. However, the

smallest repeatable distance we were able to resolve, under a combination of extremely

high magnification and a significant amount of post-processing with an image processing

program (Matrox Inspector®), was a distance produced by 10 steps, corresponding to an

error of 2.5* 10 -4 cm. The combined errors produce

-X-= L ]inital +_ L ]motors
(3.5)
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which is equal to 5A/A = 1.72 "10 .3 for A = 3.12. The uncertainty in oil injection depends

on which syringe was used. For the small (50 gl) syringe, the uncertainty is 0.5 gl, which

corresponds to 5V/V- 2.04"10 -4 for a A--3.12, V = 1 bridge. For the larger (500 gl)

syringe, 5V/V = 2.04* 10 -3. From Equation 3.4, this corresponds to an error of

8Bo/Bo = 7x10 -5. Thus, by forgoing measurement of the density, reliable Bond numbers

approaching zero can be created.

3.6.7 Optical aberrations

Figure 3.21. Magnified portion of a 1956 EIA resolution target. Approximate
magnification of 35x.

A complete measurement of the MTF of the optical system was not performed.

However, some rudimentary information can be extracted from the wavefront and from

two resolving power tests performed on an EIA resolution target 1956 (Figure 3.21) and

an electroformed sample from Metrigraphics ® (Figure 3.22). The focal spot and
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wavefrontindicatethepresenceof comaandastigmatism.At 1 )_ of defocus, the system

was able to resolve up to approximately 800 TV lines of the EIA target. The electroformed

sample from Metrigraphics ® provided arrays of round holes, ranging in diameter from

0.254 mm to 0.00254 mm, and a 38. I line per mm scale. The optical system was able to

clearly resolve an array of 0.0254 mm diameter holes as well as the linear scale. It should

be mentioned that the hole spacing is many times greater than the hole diameter.

Figure 3.22. Images ofelectroformed holes. Left, hole diameter d = 0.0508 mm. Right,
d = 0.0254 mm. The "missing hole" in the upper right comer is a hole of

d = 0.00254 mm, beyond the resolution of the system.

We can estimate system performance from the above information. The diffraction-

limited cutoff frequency for the transform lens is given in [267] by

1

fc 2)_d (3.6)

where 1 is the lens diameter, d is the focal length, and )_ is the wavelength. The cutoff

frequency is 133.79 cycles/ram. The first zero of the Hankel transform corresponding to a
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hole diameterof 0.0254mm is at 48cycles/mm,andthesecondzero is locatedat 87.8

cycles/mm.

3.6.8 Error in dynamic variables

There are two quantities that need to be assessed: the disk support motion and the

contact angle measurement.

To obtain the true information about disk support motion, it would be necessary to

place a small accelerometer on the disk supports. As an alternative, we examined the

output from the encoder, which may or may not directly correspond with the actual disk

support motion. The disk supports are assumed to be rigidly coupled to the linear tables.

A sample Fourier transform of encoder data is shown as an example in Figure 3.23.

Although there are some higher frequency components, the effect is negligible on the

experiments.
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Figure 3.23. FFT of encoder output data

Error in the frequency was assessed by comparing predicted true frequencies to

actual true frequencies. The timing circuit of the computer would output the amount of

time taken per one-half period. This was determined from communication between the
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motorandtheencoder.Theencoderwouldgive atime intervalbetweensuccessivemotor

stops. TheFFF of encoderoutputindicatesthatthiscorrespondswell to ameasureof one-

half of aperiod. Thepredictedandmeasuredfrequenciescorrespondedexactly,within the

resolutionof the timer. This comparisongives anupperboundof thefrequencyerror at

_-+0.001Hz, theresolutionof thetimermechanism.

The contact anglemeasurementswere performedmany times to minimize the

amountof measurementerror. By measuringthe anglemanually,with a protractor,the

error in contactangle5_/_= 6.25"10-3 for typical valuesof _. By measuringthe angle

with an image processing program (Matrox Inspector®), the error can reduced to

6¢/¢ = 1.11* 10-3.



Chapter 4

DETERMINATION OF THE STABILITY LIMITS OF LIQUID BRIDGES

HELD BETWEEN EQUAL COAXIAL SUPPORT DISKS

Axisymmetric bridges with pinned contact lines are perhaps the best studied subset

of the general class of liquid bridge problems (see [15, 24-29, 51-134, 173]). In this

chapter experiments that were performed using coaxial disks of equal radii (K = 1) will be

discussed, and in chapter 5 experiments involving coaxial disks of unequal radii (K _: 1)

will be discussed.

The first series of experiments measured the static stability limits of axisymmetric

bridges held between coaxial disks of equal radii for various values of Bo. Then the

bifurcation that results as a weightless bridge crosses the maximum volume limit was

investigated in more detail. These experiments, and the experiments in the next chapter,

were performed to analyze the influence of support geometry on liquid bridge stability.

4.1. Introduction

One of the first experiments performed was a verification of the stability limits of

axisymmetric liquid bridges held between equal coaxial circular disks. These limits have

been most completely determined theoretically by Slobozhanin and Perales [118] for

axisymmetric, nonaxisymmetric, and contact line perturbations. There are two major

reasons why this experiment was chosen first. Firstly, verification of such a well-

80
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establishedtheoretical study allowed the accuracyof the apparatusto be measured.

Secondly,this relatively simpleexperimentservesasa first steptoward morecomplex

experiments,suchasadeterminationof theeigenfrequenciesof axisymmetricbridges(see

chapter6). Thetheoreticalfoundationsfor theexperimentalworkwill bebriefly reviewed.

Figure 1.4showsa portionof thestability regionfor Bo = 0 (dashedline) andthe

entire stability region for Bo = 0.1 plotted in theA-V plane. A bridge lying on segment

OC of thestability limit is mostsusceptibleto nonaxisymmetricperturbationsof thebridge

shape.On thesegmentCD, thebridgeis susceptibleto axisymmetricperturbationsof the

bridgeshape,andon segmentOD, thebridgewill loseaxisymmetricstability by contact

line depinning[118]. As Boincreases,theregionof stabilitycoversasmallerregionof the

plane,but theregionsarenestedwithin eachother,andthereareno intersectionsbetween

curvesof differentBo (Figure4.1). Behaviorof thebridgein aneighborhoodof thepoint

C, the transitionpoint from axisymmetricto nonaxisymmetriccritical perturbations,and

thebehaviorof thebifurcation asa bridgecrossesthe maximumvolumelimit (segment

OC) arethetopicsstudiedhere.
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Figure 4.2. Bifurcation diagram for weightless liquid bridges (from [265]). Stability
boundary for axisymmetric states (a) and detail (b). Inserts show typical bifurcation

diagrams. An exit from the stability region results in: breaking (across the boundary branch

CDEFn); continuous transition to stable nonaxisymmetric states (across the segments T! m

and T2BT3); discontinuous transition (across the segments T IAT2 and T3C ).

The bifurcation of the solutions of the nonlinear equilibrium problem of a

weightless liquid bridge with a free surface pinned to the edges of two coaxial circular

disks of equal radii has been examined (see Figure 4.2). Recall that given a stable

axisymmetric configuration, small changes in either A or V will in general provide a

unique, continuous extension into another axisymmetric stable state. However, if the initial

state lies on the stability boundary, the uniqueness of extension is violated and the

equilibrium state bifurcates. Previous work has analyzed the bifurcation along the

boundary segment corresponding to axisymmetric critical perturbations (segment Cn) [74,

99, 105, 136, 142, 146]. The bifurcation behavior in the neighborhood of the stability
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boundary for axisymmetric equilibrium states with emphasis on the maximum volume

boundary segment (segment Am) corresponding to nonaxisymmetric critical perturbations

[265] has been studied. Along the maximum stability limit, depending upon the

slenderness, the loss of stability with respect to nonaxisymmetric perturbations for

weightless liquid bridges results in either a jump or a continuous transition to a stable

nonaxisymmetric shape. If A < Ac (segment ATI), the bifurcation is subcritical (jump

transition). If A > Ac (segment Tim), the bifurcation is supercritical (continuous

transition). The numerically calculated value of the slenderness where this occurs is

Ac - 0.4946 [265].

4.2. Experimental

4.2.1. Locating the static stability limits

To determine the stability limits a bridge was created with an initial slenderness Ai

and volume Vi (see section 3.5.2). Then either V0 or A of the bridge was changed in a

quasi-static way until the stability limit is reached (see Figure 3.14). This method was used

for numerous starting configurations, as well as different Bond numbers. In this way, the

stability region for a given Bond number was mapped out point by point. The Bond

numbers chosen were Bo = 0.002, 0.054, and 0.089. In addition, for a particular Bond

number, it was desired to investigate the behavior of a bridge in a neighborhood of the

transition point between axisymmetric and nonaxisymmetric critical perturbations. A

Bond number of 0.089 was chosen.

It is necessary to understand that these stability limits are static stability limits. That

is, the bridge is stable to infinitesimal perturbations only. Injecting a finite amount of oil

does not always meet this criteria, and neither does finite movement of the support disks.

However, the bridge cannot be initially created at the stability limit. Therefore, a bridge

well inside the stability region would be created, and the bridge slowly brought to the limit.

More specifically, starting from A = 0.002, V = 1, a path in the region of stability far from
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the margin would be followed to create a bridge with the approximate slenderness and

volume. This bridge would still be stable against perturbations that can be large. Then, A

and V0 would be changed in decreasing finite amounts to bring the bridge as close to the

stability limit as possible. As the bridge approached the limit, the time taken between

successive changes in A or V0 increased to approximately 3 minutes, to allow the

perturbation caused by deforming the bridge to decay. Smaller and smaller increments of

disk displacement and smaller and smaller amounts of oil were added or subtracted until

the bridge lost stability. The final gA/A was approximately 0.1% and 5V/V was

approximately 0.5%.

Locating the maximum volume stability limit was significantly more difficult than

locating the minimum volume limit. It is not trivial to observe the loss of stability to a

stable nonaxisymmetric shape (see Figure 4.3 a-j). The change in shape from a rotund

axisymmetric shape to a rotund nonaxisymmetric shape is very slight, and there is no

guarantee that the axis of maximum deformation will occur in a convenient plane of

observation. In order to compare one bridge to another, the bulge must be in a consistent

location. However, as mentioned above, this should not occur naturally. Small amounts

of misalignment between the upper and lower support disk lead to premature loss of

axisymmetric stability. The bridge can never be truly axisymmetric if the support disks are

not axisymmetric. It is possible to know if the misalignment of the disks are more of a

perturbation to the bridge shape than allowed by noting if the bridge consistently loses

stability to a final nonaxisymmetric configuration with a fixed orientation in space. This

was never observed. This indicated that the disks were properly aligned. Very sensitive

methods of detecting the shape disturbance had to be developed, and the bridge and bath

had to be completely isolated from all external disturbances, including vibrations and air

currents from the air conditioning system. Thus, the optical table was floated on
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compressedair andtheair conditioningsystemwasturnedoff while theexperimentwasin

progress. Various methodswere tried to unequivocallydeterminethe lossof stability.

Onemethodmeasured,underhighmagnification,thedeformationof abridge relativeto a

fixed reticule. Theothermethodcomparedthecenterlineof thebridgeto thecenterlineof

the disk supports under lower magnification. Both have distinct advantagesand

disadvantages,asdiscussedbelow.

4.2.1.1. Shape deformation

This method is more precise and sensitive to changes in the bridge shape, but

because the experiments are done at high magnification, the entire bridge could not be

imaged. It was thus difficult to determine when the bridge was in fact axisymmetric.

Sample images are shown in Figures 4.4 and 4.5. Figure 4.4 contains two images of a

bridge of slenderness 0.45 separated by a 6V = 0.02. Figure 4.5 consists of four images

of a bridge of slenderness 0.55 each separated by 8V = 0.02. Although there is a clear

qualitative difference in the behavior of how each bridge deforms in response to small

changes in volume, these images do not provide quantitative data. It is clearly impossible

to determine which of the bridges are axisymmetric. The next approach attempted to

quantify the deformation of the bridge shape by identifying the location of maximum

deformation. First the bridge was brought near the upper stability margin, making sure the

bridge remained axisymmetric. Then the magnification of the bridge was greatly

increased. The magnified image of the bridge was moved so that a reticule intersected the

bridge outline (see Figure 4.6 for a schematic). The distance between the fixed reticule

would decrease with small additions of oil until the stability limit had been reached. Then,

as the bridge crosses the stability margin, a bulge forms opposite the section of the bridge

being imaged. When this occurs, the addition of oil caused the distance between the bridge

silhouette and the reticule to increase. The difficulty remained that the maximum

deformation may not occur in the plane of observation. To overcome this, the supports
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wereslowly rotateduntil thedistancebetweenthebridgesilhouetteandthereticulewasa

maximum. At thispoint, thebulgeis locateddirectly oppositethe imagedside. Several

morevolume incrementswereaddedto follow the shapeevolution nearthe maximum

volumelimit. Thevolumeof thebridgewasthenslowlydecreasedin smalldecrementsof

oil. Small withdrawalsof oil causedthe measureddistancebetweenthe bridgeand the

reticule to decreaseuntil thestability limit wascrossed,andthensmallwithdrawalsof oil

causedthedistanceto increaseagain.This methodwaschosenbecausetherateof change

of deformationversusvolumewill alwayspassthroughzeroat the stability margin. By

contrast,if thebulgesidewasusedat thereference,therateof changeof deformationwith

volumeincrementwouldnot indicateclearlywhenstabilitywaslost.

Using this methodthe questionof shapehysteresiscould be studied. Given a

generalsubcriticalbifurcation,hysteresisis usuallyobservedin the independentvariable

(see,for example,[269]). This fact is oftenusedto greateffect in optical, magnetic,and

mechanicalsystems.However,hysteresisin bridgeshapehasnotyet beenobserved[142,

267,andit wasnotobservedhereeither.This questionis still unresolved.
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Figure4.4. Nonaxisymmetriclossof stability,A = 0.45. (top): Vi. (bottom):Vi + 0.02.

Scale for magnified portion is approximate
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(b) (d)

(a)

Figure 4.5.
(c): Vi + 25V.

(c)

Nonaxisymmetric loss of stability, A - 0.55. (a): Vi. (b): Vi + 8V.

(d): Vi + 38V. 5V - 0.02. Scale in magnified portion is approximate.



91

Ca)

(b)

(c) I

Figure 4.6. Schematic of shape deformation method of measurement. A = 0.225,

Vi = 1.31, Vc = 1.33, 8V = 0.025, Bo <10 -4.

4.2.1.2. Centerlines

A bridge was formed and oil added by a microsyringe. At each addition of oil,

five intensity scans of the bridge image were taken, one through each of the disk supports

and the other three through the bridge. The center of the supports and of the bridge were

determined by locating the edges of the features in the scan line (Figure 4.7). If the

centerpoints coincide, the bridge is assumed to be axisymmetric, and if there is a difference

greater than the measurement error (2 pixels) then the bridge is assumed to be
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nonaxisymmetric. The initial volume of oil in between the disk supports is taken into

account by assuming a right circular cylindrical bridge of slenderness 0.002. (0.002 is the

average initial gap of the disk supports). This method provides a means to measure the

critical volume Vc at an extremely high level of precision.

This method was not quite as accurate as the previous method, but we were able to

image the entire bridge by using a moderate amount of magnification. The main advantage

to this is we were able to quickly and easily determine if the bridge was axisymmetric. The

method of comparing centerlines produced similar results to the results obtained with the

shape deformation method.
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Figure 4.7. Method of centerlines. A = 0.225
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Figure 4.8. Comparison of numerical and experimental results. (O): Bo = 0.002. (O):
Bo = 0.056. (O): Bo = 0.089. (red line): numerical results, Bo = 0.05. (blue line):

numerical results, Bo = 0.1.

The results obtained for various Bond numbers are presented above, in Figure 4.8.

Each region of stability for a given Bo is enclosed by a region with a smaller Bo. There is

no maximum Bo such that there exists stable axisymmetric bridges. Each region is closed,

except for the case Bo = 0. Along segment OC (see Figure 4.1), the bridge will lose

axisymmetric stability and attain a stable nonaxisymmetric shape. This configuration will

be stable for volumes well in excess of the axisymmetric limit (see Figure 4.9) As point C

is approached, the bridge will lose stability to a nonaxisymmetric mode while also necking

down axisymmetrically (see Figure 4.10). Along the segment CD, the bridge loses

stability through axisymmetric modes. It will form a neck, and upon losing stability, will

break into two distinct pieces plus a satellite drop (see Figure 4.11). In general, the halves



95

will not have equal volume, as the dangerous perturbation is a sine function (the neck will

occur approximately i/3 the distance from a support). The segment DO was not

investigated here.

Figure 4.9. A stable nonaxisymmetric bridge. A = 0.87

4.3.2 Bifurcation of a neutrally stable weightless bridge at the maximum volume limit

Figure 4.12, below, summarizes the bifurcation data for liquid bridges of various

slenderness using the method of shape deformation (the deformation has been made

dimensionless by normalizing to the radius of the disk support). The sudden large

deformation observed for bridges with A < 0.4 as they bifurcate from the critical

axisymmetric state, combined with the theoretical prediction that these bridges should

undergo a subcritical bifurcation, suggests that the expected jump-like transition for A <

0.4 is physically manifested in a rapid evolution toward the stable nonaxisymmetric state

through a continuous sequence of unstable shapes. Work should be done to
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unambiguouslydeterminethe presenceor absenceof hysteresisacrossthe maximum

volumelimit.

Figure4.10. Lossof stabilitynearthetransitionpointC. A = 3.530.Bo = 0.089

Figure4.11. Lossof stability to axisymmetricperturbations.A = 3.412.
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Figure 4.12. Data for bifurcation experiment. Shown here is the rate of change of

dimensionless deformation _ versus V against V/Vc.

4.4. Conclusions

The static stability limits for axisymmetric liquid bridges held between coaxial

disks of equal radii were investigated. The experimental data agrees with previous results,

except for the maximum volume, large A regions of stability. This is due to imperfect

wetting at the disk edge, which causes the bridge to lose stability prematurely. The detailed

behavior of a bridge as it undergoes a bifurcation to a nonaxisymmetric configurations was

studied. It has been shown that there exists a critical slenderness Ac, below which the

bridge undergoes a rapid transition to a stable nonaxisymmetric shape, and above which

the bridge undergoes a continuous transition to a stable nonaxisymmetric configuration.

Future work could study the stability limits of nonaxisymmetric bridges, either large

bridges held between coaxial disks or bridges held between noncoaxial disks. The loss of

stability due to contact line depinning could be studied as well (segment OD in Figure 4.1).



Chapter 5

DETERMINATION OF THE STABILITY LIMITS OF LIQUID BRIDGES

HELD BETWEEN UNEQUAL COAXIAL SUPPORT DISKS

1. Introduction

The static stability limits for axisymmetric liquid bridges held between unequal

coaxial circular disks were measured as part of a process to analyze the effect of support

geometry on liquid bridge stability. Although much work has focused on stable bridge

configurations held between supports of equal size, much less work has been performed

when the supports, either spheres [31 ] or disks [73, 115], are of unequal size, and focused

on the minimum volume limit. Here, both maximum and minimum volume limits were

measured for K = 0.2, 0.4, 0.6, and 0.8, where K is the ratio of the disk diameters. These

limits were each measured at Bo = _+0.100. In addition, the effect on bridge stability as

K ---> 0 was investigated for K = 0.09. It should be emphasized that this is the first

experimental comprehensive examination of the problem, and the first examination of the

maximum volume limit. With the exception of [165,265], the numerical solution to this

problem has not been worked.

98
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2. Method

The experimental method used is identical to the method described in Chapter 4. A

bridge would be created at a starting configuration (Ai, Vi) and the disk separation and

volume slowly changed to bring the bridge to the stability limit.

3. Results

The character of the stability limits is fundamentally altered for the case of unequal

disks (Figure 5.1). These numerical solutions for this problem was presented in [ 169].

Now there is a difference if gravity is pointing "up"-'_owards the larger disk (Bo < 0), or
J

"down" towards the smaller disk (Bo > 0). The regions of stability are no longer nested as

they were for the case of equal disks. There exists a maximum positive Bond number for

each value of K < 1 such that there are no stable bridges for Bo > Bomax(K). There exists

several cusp points on the boundary. For Bo > 0, the cusp point on the lower boundary is

an absolute minimum volume for a particular aspect ratio, for all values of K. The effect of

axisymmetric loss modes at the lower cusp point can be used as part of a very sensitive

method to measure Bo (see Chapter 3, [116]). For Bo < 0, K < 0.3, there exists a cusp

point on the maximum volume limit marking a transition from nonaxisymmetric breaking

modes (A > Ac) to axisymmetric breaking modes (A < Ac). For Bo > 0, K < 0.3, there is

also a transition to axisymmetric breaking modes on the maximum volume limit, but there

is no corresponding cusp point.

The experimentally measured stability limits are shown below (Figure 5.2). The

location of the cusp point on the minimum volume limit was found for Bo - 0.1 and all

values of K. It as found that for Bo = +0.1, K < 1, stability may be enhanced in the sense

that a bridge of a given aspect ratio will be stable at a smaller volume than is possible for K

= 1. When gravity points toward the smaller disk (Bo > 0), the bridge assumes a pendant

drop shape and this helps the bridge remain anchored to the smaller disk (see Figure 5.3a).

The transition from nonaxisymmetric critical perturbations to axisymmetric critical
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perturbations on the upper stability limit was found for K = 0.2. Figure 5.4 shows a bridge

near the maximum volume limit when critical perturbations are axisymmetric.
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Figure 5.1. Numerical stability limits for K < 1. (solid): Bo = 0.1. (dashed): Bo = -0.1.
(dot-dashed): K = 1, Bo = 0 minimum volume limit, for comparison (from [165]).
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Figure 5.2. Experimentally measured axisymmetric static stability limits (K _ 1) for
B• = 0.1 (blue line, o) and B• = -0.1 (red line, n) under different values of the disk

diameter ratio K.

The effect on bridge configuration as K _ 0 was investigated. Figure 5.5 a,b are

bridges near the minimum volume limit for K = 0.8 and B• = -0.1. Although the neck is

slightly more pronounced than for K = 1, the overall effect is slight. In the limit of K --, O,

the bridge behavior should approach that of a hanging drop or sessile drop, with the

additional constraint on A. It is important to note that while in the limit of a vanishing disk
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radius the minimum volume limit for a liquid bridge has a physical meaning, while for a

hanging drop it does not. This can be seen in Figures 5.6 and 5.7, where K = 0.2 (Figure

5.6) and K = 0.09 (Figure 5.7). Here, a squared-off hypodermic needle was used as the

lower disk for K = 0.09 (the dropping tip of chapter 3). However, because the needle did

not have sharp edges, the maximum volume stability limit could not be studied as the

contact line would slip over the edge.

Figure 5.3. Examples of bridges near lower stability limit (K = 0.2). (a) A = 3.744,
V = 2.29, Bo = 0.1 (b) A = 2.606, V = 5.04, Bo = --0.1
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Figure 5.4. Example of symmetric loss of stability along upper stability margin, (K = 0.2,
A = 1.03, V = 4.59, Bo = 0.1). Note that the disks are slightly misaligned.

Figure 5.5. Axisymmetric liquid bridges near the minimum volume limit (K = 0.8,
Bo = -0.1). (a) A = 2.778, V = 5.00. (b) A = 3.28, V = 4.82.
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Figure5.6. Effect onbridgeconfigurationasK _ 0 (K = 0.2,Bo = 0.1). A = 3.73,

V = 3.47

(a) (b)

Figure5.7. Effect onbridgeconfigurationasK --_0 (K = 0.09, Bo = 0.1). (a) A = 2.285,
V-6. (b) A=l.73, V-3.
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4. Conclusions

The effect of support geometry on bridge stability was investigated through use of

coaxial unequal disk supports. Several qualitative differences occur between this case and

the case K = 1. The minimum volume cusp point provides a useful method for

determining Bo. In [116] a similar method to the one outlined here was used, the

difference being in that case, the ratio of drop volumes after breaking was used to

determine the location of the cusp point. The existence of a second transition point on the

maximum volume limit to axisymmetric breaking modes is a second difference.

Comparison of experimental values with numerical calculations is good, except at the

maximum volume limit, large A region, the same as K = 1. This is due to imperfect

wetting conditions at the disk edge. The limiting effect as K --) 0 was investigated for

K = 0.09. Bridge stability is enhanced when Bo > 0, K < 1, even approaching the Bo = 0,

K = 1 case. Future work could investigate the stability of nonaxisymmetric bridges that

result following the loss of axisymmetric stability, as outlined at the end of chapter 4. The

limiting case for K --) 0 could also be investigated further. The most practical way would

be to increase the larger disk radius.



Chapter 6

DYNAMICS OF VIBRATING LIQUID BRIDGES

1. Introduction

A series of experiments has been undertaken to determine the spatial mode

structure of neutrally buoyant right circular cylindrical liquid bridges held between coaxial

sharp-edged disks subject to lateral sinusoidal oscillation at various amplitudes in the

neighborhood of the fundamental resonance (see Figure 6.1). This began as a verification

of a g-jitter numerical study performed earlier [106]. Experimental and theoretical studies

of non-axisymmetric oscillations are limited. Small amplitude inviscid non-axisymmetric

oscillations have been examined theoretically by Gafi_in and Barrero [97]. Experimental

work with lateral oscillation of the lower disk was also carried out by Sanz and Lopez-

Diez [62] and Tsamopolous et al. [15]. Experiments were performed with both the disk

supports vibrating laterally in phase. In all frequency sweeps, the acceleration was held

constant, thus requiring the displacement amplitude to change with frequency. This is

different from previous experiments [62] where the displacement amplitude was held

constant during a sweep of frequency. This way we could measure the bridge sensitivity to

acceleration in a more straightforward manner. We attempted to measure the resonant

frequency by visually observing an oscillating bridge, by measuring the mechanical gain of

the system (maximum bridge deformation divided by maximum disk amplitude), and by

measuring the contact angle during oscillation. We are interested in nonlinear shape

106
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behaviorandnonlinearfrequencyresponseof vibrating liquid bridges,which act asweak

springs[15]. In aneffort to explain theresonantbehaviorin detail,threemethodswere

usedto analyzethedynamicbridgeshape.Therefractionof a laserbeampassingthrough

thebridgein theplaneof vibrationwasobserved.Thespatialmodestructureof thebridge

wasimagedvia theFourierplane.Finally, anFFT wasperformedon thefiltered imageof

thebridge.

Herethefirst experimentalobservationof thenonlinearthird harmonicpresentin a

liquid bridge undergoing lateral vibration at the fundamental frequency is reported.

Typically, a forcednonlinearoscillatorwill displayanonlinearthirdharmoniccontribution

to theresponse[269]. Imagesof aV = 1,A = 2.6bridgeoscillatingnearN = I, 2, and3,

m = 1resonancesareshownbelow(Figure6.2).

2. Gain experiments

This methodwasoriginally chosenbecausepreviousexperimentsusedthe same

method [62]. However, at small excitation amplitudes,bridgesmadefrom 100cs oil

wouldnot deformenoughto provideanaccuratemeasurement.Thus, 5cs oil wasused.

The gain wasmeasuredby measuringthe maximumamountof bridgedeformationand

comparing it to the amount of distancethe support disks moved. The maximum

deformation of the bridge was measuredby placing a Ronchi ruling between the

collimating lensandtheliquid bridge. Themagnificationof theruling wasmeasuredby

movinga disk a knowndistanceuntil oneperiodof the ruling had been traversed. Each

Ronchi ruling period corresponded to 0.5 mm in the object plane. Thus, the deformation

could be measured by counting the line pairs of the ruling. This method provided a simple

and reasonably accurate means to measure a deformation of a fluid body when the center

of mass does not remain in a set position. A sample raw image is shown below [Figure

6.3]



N=I

N=2

N=3

m=0

m=l m=2 m=3

m=l

z_

.4"

m=2 m--3

108

Figure 6.1. Computed resonant shapes of laterally oscillated bridges (from [62]).
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(a) (b) (c)

Figure6.2. Imagesoflaterally oscillatedA= 2.6 liquid bridges. (a):N= 1,m= 1. (b):
N=2, m=l. (c) N=3, m=l.

The gaincurvesshowclearevidenceof saturation(Figure6.4). Thatis, increasing

excitationamplitudesdonotproduceaproportionatelyincreasingdeformation. It should

bepointedout thatlargeamplitudeoscillationsproducebridgemotionnot limited to m = 1.

In addition, evidenceof complicatedbridgebehaviorin theneighborhoodof theresonant

frequencyat smallamplitudeoscillationsis seen. In particular,thepresenceof the local

minimumon what is otherwiseanordinaryresonantpeakpromptedtheconstructionof a

method to even more precisely and accuratelycharacterizethe bridge shapeduring

oscillation. Measuringthe contactanglethe bridgemakeswith a disk supportprovides

moresensitivemeasurements.Thereasonfor this isexplainedbelow.
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Figure 6.3. Experimental image of a laterally oscillating liquid bridge, A = 2.826
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Figure 6.4. Experimentally obtained gain curves, A = 2.826. (121):A = 0.1 crn/s 2.

(O): A = 0.5 crn/s 2. (O): A = 1.0 cm/s 2. Note the saturation and the complex behavior of

the gain curves in the vicinity of the resonant frequency.

A V = 1 weightless liquid bridge undergoing a small lateral sinusoidal oscillation

has a deformation fp [15,62]:

fp - ANmZNm (z) cosm0 cos(CONmt + _Nm ), (6.1)

where N, m are the axial and azimuthal wave numbers, respectively. The axial

term, ZNm, closely matches cos(r_z/2A) for N = 1 and sin(nz/A) for N = 2 [15]. The axial

function is normalized to the height of the bridge z = -A to z = A. In the case N, m = I,

and ignoring the time-dependence term, the contact angle _ at the disk supports is given

by:

df sin{ nz]Tttan¢_ = d-z z=_+A = All 2-A ]'A z='l-A
(6.2)
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(6.3)

Therefore, if All<< 1 (small amplitude excitations), small changes in the

excitation 8A 11 will produce small changes in deformation 8fp but large changes in contact

angle 80. In addition, the contact angle can be measured more accurately than the shape

deformation amplitude. In addition, we felt that we could reduce some of the measurement

error by using contact angle measurements.

3. Contact angle experiments

Experimental data of the range of contact angle motion during lateral oscillation is

shown below [Figure 6.5]. Each point represents 6 measurements of the contact angle

taken at 100x magnification (3 at maximum and 3 at minimum). The time of maximum

and minimum contact angle was fixed by measuring the contact angle 20 times during one

oscillation period. The image was frame grabbed and each captured digital image was

analyzed manually by an image processing program (Matrox Inspector®).

A = 3.0 shows behavior consistent with the gain data and [15]. The resonant

frequency is lower than the linear theory predicts, consistent with a liquid bridge

representing a soft spring. Now a local minimum can be clearly seen in the neighborhood

of the resonant frequency. Based upon eigenmode analysis (see below), the local

minimum is at the resonant frequency, and that the inhibition of contact angle motion is

caused by nonlinear shape deformations of the bridge.
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Figure 6.5. Measured range of contact angles assumed during lateral oscillation of a liquid

bridge. (13): A = 0.1 cm/s 2. (O): A = 0.2 cm/s 2. (tX): A = 0.3 cm/s 2. (O): A = 0.4 cm/s 2.

There is similar behavior when laterally vibrating a bridge of A = 2.6. There is a

local minimum of contact angle motion immediately surrounding the resonant frequency.

Note that at high vibration amplitudes, the liquid bridge is not in a pure m = 1 state. This

explains the broadening of the resonant peak, and the loss of a well-defined local

minimum.

4. Mode analysis

Three different methods were used in an attempt to quantify the spatial mode

structure of the bridge during oscillation. The first involved observing a raw laser beam as

it was deflected by the bridge deformation. The second involved observing the behavior of

the bridge in the Fourier plane. Lastly, a FFT was performed on the filtered image of the

bridge.
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4.1 Laser beam deflection

Because the index of refraction of the bridge is different from the index of

refraction of the bath, light passing through the bridge is refracted (Figure 6.6). A raw

laser beam passed through the bridge near the centerline in the plane of oscillation at

various axial heights. A position sensitive photodiode collected the deflected beam (see

chapter 7), and the position monitored as the bridge underwent lateral vibration. An

advantage of this method is that effects from m _ 1 modes can be partially filtered out by

only observing the deflection in the axial direction. The shape of the beam that impinges

on the photodiode is a horizontal line due to refraction of the light through the bridge. The

bridge has approximate optical powers of 0.12 perpendicular to the plane of oscillation and

0.02 in the plane of oscillation. Both of these depend on the specific composition of the

bath and the shape of the bridge. A cylindrical lens, placed appropriately, would cancel out

much of the refraction perpendicular to the plane of oscillation. Data is shown below

[Figures 6.7-6.9]. Some striking features especially stand out.
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Figure 6.6. The refraction of a light ray through an oscillating liquid bridge. (a): the
deflection of a beam during oscillation. (b): the effect of aberrations on a refracted beam
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Figure 6.7. FFT of a raw laser beam passing through a laterally oscillated bridge in the

plane of vibration. See text for a detailed description

Figures 6.7 a-f show the FFT obtained by a beam passing through different

portions of the liquid bridge. In all cases, the beam passes through a A = 2.6 bridge in

the plane of oscillation, near the centerline. Figure 6.7 a-c is for an oscillation amplitude of

0.1 cm/s 2, and Figure 6.7 d-f if for an amplitude of 0.5 cm/s 2. Note the difference in

behavior as the beam passes through the bridge (a,d) near the feed disk (z = A), (b,e)

halfway between the feed disk and the midplane of the bridge (z = A/2), and (c,f) the

midplane of the bridge (z = 0). Figure 6.7 a-c represents the behavior of the bridge in a
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smalloscillationregime,whileFigure6.7d-f representsnonlinearbehaviorof thebridge.

Note the presenceof the secondharmonicwhich occurseven at very low excitation

amplitudes. The secondharmonicis most suppressedat z -- A (near the support disks)

and least suppressed at z = 0 (the midplane). When the beam passes near the midplane, the

beam is undeflected for a total of 4 times per oscillation period, when it is undeflected a

total of 2 times at other axial positions. The higher order terms are due to aberrations

introduced by the dynamic surface of the bridge. This is shown schematically in Figure

6.6 b for the simplified case of spherical aberration. As the bridge deforms, the surface

becomes (equivalently) an aberrated lens (broken lines in Figure 6.6 b), and the beam will

strike the detector in a different spot than it would for an aberrated lens (solid line in Figure

6.6 b). Thus the higher order modes present in the refraction data provide information

about the dynamic shape of the bridge. A careful quantitative analysis of the aberration

effects would be very useful and might provide a detailed description of the dynamic

bridge shape during oscillation.

Figures 6.8 and 6.9 are spectra of beam deflection for a beam located at z = A/2

for a range of frequencies at acceleration amplitudes 0.1 (Figure 6.8) and 0.5 (Figure 6.9)

cm/s 2. Although it is not clear which of the excitation frequencies represent an

eigenfrequency, it is clear that higher-order mechanical vibrational terms are present in the

response of the bridge. In all cases, the deflection of the beam shows remarkably sharp

peaks, and the spectra is relatively free of noise, The presence of higher-order terms occur

with great regularity, in some cases, up to the fifth harmonic is visible. There appears to be

a suppression of the higher modes at frequency 0.865 Hz and 0.930 Hz in Figure 6.9. In

addition, there seems to be a transition from a slightly noisy spectra below a certain

frequency to a very clean spectra above a certain frequency, in this case 0.860 Hz for

Figure 6.8 and 0.930 Hz for Figure 6.9.
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4.2. Direct imaging of the spatial mode structure

The second experiment directly imaged the spatial Fourier transform of a A = 2.6

liquid bridge. It was hoped that the spatial modes would provide a recognizable signature

in the Fourier plane. Fig 6.10 a-d are images of the liquid bridge undergoing spatial

oscillations with amplitudes 0, 0.04,0.1, and 0.2 cm/s 2 at a frequency of 0.880 Hz. This

frequency was chosen because it was near the first resonant frequency for the various

amplitudes. The presence of the dc stop is clearly shown.

(c)

Figure 6.10. Images of the Fourier plane of a laterally oscillated liquid bridge.

(a): A = 0 crn/s 2. (b): A = 0.04 cm/s 2. (c): A = 0.1 cm/s 2. (d): A = 0.2 cm/s 2. The dc
term has been blocked.

Unfortunately, although some qualitative analysis is possible, the complexity of the

Fourier plane precludes quantitative analysis. Among other problems, the light refracted
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throughthebridgeobscuresthedesiredinformationfor muchof theoscillationperiod,and

only at somevery specific times(maximum, minimum deflections)can the imagesbe

compared.An attemptwasmadeto digitally subtractoneimagefrom another,but thisdid

not improvethe images. The fundamentalis shownby thediagonallines, left-right and

up-downsymmetricthatoccurat approximately45° (thisvaluedependson theamplitude

of the deformation). The presence of higher harmonics are revealed by the side-lobes to

the fundamental resonance lines. An analytic expression for the Fourier transform of the

bridge does not exist, being of the form (using the notation in [263,264]):

F(r],_) = _-_ f_ dx dy[rect(Y)iS(x - cos(y) + R)] e 2ni(nx+_y) (6.4)

where the argument is the expression for the (filtered) bridge silhouette. An approximate

solution can be obtained by approximating the cosine shape of the bridge as two lines that

meet at an angle _ (see Figure 6.11). The magnitude of the transform of this would also be

two lines (really the line response of the system [263]) that intersect through the origin at

an angle _/2, in qualitative agreement with Figure 6.10. Recall:

g(ri,_) = F(8(O-_)) = 1/(2n2)(rlcos_+_sin_) -2. (6.5)

The lines in the transform plane are at different phases due to the lateral offset of the

lines in the object plane from the origin, but intensity-dependent measurements are

insensitive to this phase difference. Including lines at different angles to better approximate

the true sinusoidal shape would introduce other lines in the transform plane at other angles.
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Figure 6.11. Approximation to bridge shape and the corresponding Fourier transform

4.3. Numerical analysis of the bridge shape

Lastly, an FFT of the spatially filtered bridge image was performed (see fig 6.12,

6.13) to analyze the bridge shape. Images taken while the bridge was oscillating were

digitized. Scan lines across the image were used in a method similar to the method of

centerlines in chapter 4, section 2.1.2. The edge of the bridge silhouette was sampled at

regular intervals in the axial direction, and the data was subjected to a built-in FFT

algorithm in Mathcad ®. The fundamental response of the bridge, sin (z/A), was subtracted

from the image data, and after subtracting out this fundamental frequency component, the

third harmonic appears clearly at the acceleration amplitude 0.2 cm/s 2.
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Figure 6.12. Filtered images of a laterally oscillating bridge. (a): A = 0 cm/s 2.

(b): A = 0.04 cm/s 2. (c): A = 0.1 crn/s 2. (d): A = 0.2 cm/s 2.

5. Conclusions

The nonlinear dynamics of a neutrally buoyant V = 1 laterally oscillated liquid

bridge have been analyzed. In particular, it has been determined that when the disk

supports are laterally oscillated near the first resonant frequency of the bridge, even at low

excitation amplitudes, the amount of contact angle motion occurring during oscillation

decreases relative to exciting the bridge off-resonance. This is due to the presence of a third

harmonic mechanical response of the bridge. This was determined by utilizing the nature

of the Fourier transform to identify the spatial modes. There appears to be a qualitative

difference in resonant behavior between A = 2.6 and A = 2.826 bridges, and this should be

explored further.
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Figure 6.13. FFTs of filtered bridge images (fundamental subtracted). (a): A = 0 cm/s 2.

(b): A = 0.04 cm/s 2. (c): A = O. 1 cm/s 2. (d): A = 0.2 cm/s 2.



Chapter 7

LIQUID BRIDGE FORCE MEASUREMENTS

7.1. Introduction

Forces exerted by a liquid bridge on a solid support are important in powder

wetting problems, deformations of porous or unconsolidated media, and in adhesion

problems [6-10]. Surfaces being studied with Atomic Force Microscopy (AFM) or

Scanning Tunneling Microscopy (STM) techniques can be damaged by the formation of a

bridge between the sample and the scanning tip [270]. The forces involved are the capillary

force due to interfacial tension, and the hydrostatic pressure due to the curvature of the

liquid bridge surface. For a liquid bridge held between two coaxial disks, we used a force

deflection apparatus to measure the total force exerted by a liquid bridge on the lower disk.

The lower disk was replaced with a thin polycarbonate disk which was attached to the end

of a long cantilever arm (see Figure 7.1). The cantilever arm acts as a weak spring. The

liquid bridge displaces the disk by an amount proportional to the total force, Ftot, exerted

on the disk. Then, by directly measuring the displacement, we can determine Ftot. After

calibrating the deflection of the cantilever arm with known applied loads, two sets of

experiments were performed. In the first set, the total force was measured for various

aspect ratio right circular cylindrical bridges (Bo = 0). This provides a simple method to

measure the interfacial energy 7. The second set of experiments involves measuring the

force exerted by liquid bridges with a variety of aspect ratios and volumes at different Bond
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numbers. The principal question to be answered by this set of experiments is how the

force changes as the liquid bridge approaches the minimum volume stability limit. In

addition, computations of the force were carried out and the results compared with

experimental data

Feed

Mobile Upper

Polycarbonate

L

2R

uid Surface

Cantilever

Figure 7.1. Force balance apparatus.

7,2,

is:

or:

Theory

For a liquid bridge immersed in a bath, the total force Ftot exerted on the lower disk

Ftot = Fcap + Fhydro (7.1)

Fto t = 2nR7 sin_- 2nR2j_ , (7.2)
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whereR is theradiusof thedisks,y is the interfacialenergy,_bis thecontactangle,andJ is

themeancurvatureof theliquid bridgenearthe lowerdisk.

For right circularcylindrical bridges,thetotal forcesimplifiesconsiderably,asthe

contactangleis90degrees,andoneof theprincipalcurvaturesiszero. Therefore,for right

circularcylindrical (weightless)bridges,thetotalforceisgivenby:

Ftot = rtR7 (7.3)

Theforcecanbenondimensionalizedby dividingby thisscalefactor,F = Ftot/nR7.

7.3. Apparatus

A steelcantileverarm,length= 8.5cm,diameter= 0.009inches(0.0229cm), was

attachedto arigid supportat oneendandto a I cm diameterthin polycarbonatediskat the

other(Figure7.1). Thecantileverarmwasanelectricguitarstring (GHSstrings)andis a

plainsteelsimilar to pianowire orspringsteel.To easilytrackthemovementof thedisk, a

pieceof reflective white plastic tubing was located6.2 cm from the fixed end of the

cantileverarm. This pieceof plasticdiffuselyscattersa laserbeam,whichwascollectedby

a 35 mm single lens reflex cameraand an 80 mm macro zoom lens, with a position

sensitivephotodiodemountedat the film planeof the camera. It was found that the

maximumsignal to noiseratio wasobtainedby a combinationof maximum zoomand

maximumdefocusof the lens. This producesthe largestspotof light on the photodiode.

The photodiodeis connectedto a United DetectorTechnologymodel431 X-Y position

monitor. This positionmonitor providesseparateoutputsfor position in the x-direction

and position in the y-direction. By decoupling the motion in the vertical and horizontal

direction, we can ignore the horizontal component of motion due to the fact that the disk

moves along a segment of arc and not straight line. Output from the position monitor was

sent to a chart recorder. The movement of the reflective plastic was tracked, and thus of
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the lower disk. In addition, the liquid bridgewasmonitoredwith a CCD video camera

connectedto a video monitor through a videocassetterecorder. This allowed direct

measurement of the contact angle on the lower disk, which was used to estimate the

amount of capillary force.

To calculate force from the measured deflection, it was assumed that the cantilever

arm obeys Hooke's law. This was verified by displacing the disk a known amount and

measuring the resultant load. The modulus of elasticity of the cantilever arm was found to

be 30.42 x 106 psi, or 2.138 x 109 g/cm 2, and the effective spring constant was measured

to be 137.51 dyne/cm. The force constant is linear over a large range of motion.

7.4. Procedure

7.4.1 Calibration

To calibrate how motion of the disk was related to motion of the chart pen, the

lower and upper disks were connected by a thin film of silicone oil. Because the thin film

holds the two disks together, the motion of the upper disk equals the motion of the lower

disk, in the limit of small displacement. The upper disk was moved by computer

controlled stepping motors moving along linear actuators. The precision of movement of

the upper disk is 2.05 x 10 -5 cm. The deflection of the chart pen was recorded and the

position was held constant for two minutes to give a stable average reading. For small

displacements (less than 0.25 cm) the motion of the pen was a linear function of the disk

displacement (see Figure 7.2 a-d). For larger displacements, a quadratic fit is necessary.

Two different lasers were tried, a 5 mW HeNe laser and a 15 mW HeNe laser. It was

found that the brighter spot of the higher power laser greatly reduced the measurement

noise of the position sensitive photodiode. In addition, the 15 mW laser produced a nearly

linear relationship between actual disk displacement and chart recorder output. Thus, the

higher power laser was used for all experiments. The calibration procedure was performed
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for each separatetrial run. This is becausechangesin the relative positions of the

photodiodeandreflectorplasticandchangesin theamountof ambientlight alter thescale

factor for thechartdisplacementversusdisk displacement.As shownon thecalibration

graphs,althougheachscalefactoris approximatelythesame(with theexceptionof the 5

mW laser),thescalefactordoeschangefrom calibrationto calibration.
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Figure 7.2. Calibration of chart recorder output. (a) 5 mW HeNe laser source. (b) - (d) 15
mW HeNe laser source
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7.4.2 Right circular cylindrical bridges

The forces exerted by right circular cylindrical bridges with different aspect ratios

were examined. This was done by allowing the cantilever arm to establish its equilibrium

position corresponding to the buoyancy force of the disk and wire relative to the bath. This

position was recorded on the chart recorder. The upper feed disk was then brought into

contact with the lower disk, and adjusted to bring the lower disk back to its equilibrium

position. This eliminates any effect caused by the buoyancy of the cantilever arm. The

density and temperature of the bath was adjusted to produce nearly neutral bouyancy

conditions (see section 3.5.1). Silicone oil was manually injected, and the upper feed disk

moved until the bridge appeared to be a right circular cylinder upon visual inspection. The

aspect ratio was measured directly from the viewing monitor with a set of calipers, and the

displacement of the lower disk measured directly from the chart recorder. For right

circular cylinders, the total force on the lower disk reduces to a linear dependence upon the

radius of the disk and the interfacial energy. Because the radius of the disk is a constant,

the displacement of the lower disk is proportional to the interfacial energy only. This fact

was used to measure the interfacial energy 7 at low Bo (see section 3.4.3.1.3).

7.4.3 General Liquid Bridge Configurations

The final set of experiments involved mapping out sections of the A-V stability

region for a given Bond number. Before creating each new bridge, the cantilever arm was

brought to its equilibrium position. The computer controlled motors were used to displace

the upper disk a specified amount. The microsyringe injected a known amount of silicone

fluid. The deflection of the lower disk was continuously recorded for a series of

deformations, and the physical parameters of the bridge (volume, aspect ratio) were

calculated from records of motor and lower disk movement. A sample of raw output data

from the chart recorder is shown below (Figure 7.3), and the data is presented in Figure

7.4. Beginning on the left-hand side, the calibration of disk motion is recorded. The pen
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travelsfrom left to right at a speedof 1 in/10 min. Thenext featurepresentis the initial

locationof the lower disk. After thebaredisk reachesanequilibrium position, theupper

disk isbrought into contactwith the lower disk,causinga displacementof the lower disk

until the oil wets the lower disk. The lower disk is thenmanuallybrought back to the

original equilibrium position. The three curveseach representa bridge of fixed V0

subjectedto changesin A. Thenumeralsindicatehow manysquaresthecurve is from

equilibrium. The first curve represents(Ai, Vi) of (0.338,1.88), the second,(Ai, Vi) of

(0.219, 1.16),and the third (Ai, Vi) of (0.134,0.946). Note how asAi decreases,the

behaviorof thebridgeastheminimumvolumestability limit is approachedbecomesmore

andmoreexaggerated.At theendof thefinal sequencethebridgebroke. Notethatthe(A,

V) valuesfor thefirst two or threepointsof thefinal curveof therawoutputlie outsideof

thestabilitymargin. A possibleexplanationwill bepresentedattheendof thischapter.
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Figure7.3. Chartrecorderoutputof lowerdiskdeflection
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There is one striking and unexpected trend in the data. For bridges with small

volumes and aspect ratios, the force curve exhibits a maximum upward force before the

bridge crosses the minimum volume stability limit. This contrasts with larger bridges that

do not exhibit this maximum. We also performed a numerical calculation of the force

exerted by the bridge on the lower disk, and the graph is superimposed over the measured

data (Figure 7.5). The calculations do not match well at low aspect ratios and high

volumes, but the calculation converges with the measured values at larger aspect ratios and

smaller volumes. A reason why this may be the case is shown on the graph comparing the

measured values of the contact angle with the calculated values (Figure 7.6). There is a

large difference between the predicted value of the contact angle and the measured value of

the contact angle. The possibility of a volume error in the experiment was investigated.

The calculation was performed again, but with a 5% reduction in volume. Although

agreement was slightly improved (Figure 7.7), the amount of volume error to completely

account for the discrepancy is unrealistic, given the accuracy and precision of the syringe.
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7.5. Error sources

The primary source of systematic error is due to the fact that the radius of the

cantilever disk was not exactly equal to the radius of the upper feed disk. The ratio of disk

radii is 0.98, with the cantilever arm disk the larger. This systematic error is 4%, as the

pressure and Bo scale as R2. The next most critical error is the fact that the lower disk does

not remain parallel with the upper disk, but instead is at a relative angle to the upper disk.

The maximum misalignment is 5 degrees, which corresponds to an error in the capillary

force of approximately 0.8%. The resolution and noise level of the chart recorder places an

error of _+0.8 dyne on the total force, which is an error of 5% at typical force values. This

is larger than the systematic error. The error in volume is the same as calculated in section

3.6.6, but the error in aspect ratio is related to the error in lower disk displacement, which is

given by the resolution of the chart recorder, approximately 0.05 mm of real displacement,

corresponding to 15A/A ---5 * 10 -3.

7.6 Conclusions

A series of experiments measured the force exerted by a liquid bridge on the lower

support disk. Discrepancies between the numerical results and the experimental results

were attributed to differences in computed and measured contact angles. A possible

explanation for this is that the contact line is not perfectly pinned on the polycarbonate disk.

This would also explain why a few of the bridge configurations lie outside of the stability

region. If the contact line had slipped over the edge of the disk, the lower support disk

would not be at the proper height. Future experiments with a sharp-edged steel support

disk may reconcile the discrepancy. Other future experiments could probe the dynamics of

breaking and of drop coalescence.



Chapter 8

SUMMARY AND FUTURE WORK

The static and dynamic behavior of liquid bridges have been studied for this

dissertation. New insights have been gained as a result of this work. The effect of support

geometry on the stability of axisymmetric liquid bridges has been investigated. The

dynamics of liquid bridges laterally oscillating in a neighborhood of the fundamental

eigenfrequency has been investigated as well. Lastly, the force an axisymmetric bridge

exerts on the lower disk support has been measured for a variety of A, V and Bo.

Two new results were obtained through experiments designed to study the effect of

support geometry on bridge stability. The effect of A on the loss of stability to

nonaxisymmetric perturbations has been studied. It was found that there exists a critical A,

Ac, such that if A < Ac, the bifurcation is subcritical, while for A > Ac, the bifurcation is

supercritical. The effect of K, the disk radii ratio, on axisymmetric bridge stability was also

studied. It was found that if gravity is oriented towards the smaller disk, stability is

enhanced in the sense that the minimum volume can approach the zero-gravity case for a

specific A and Bo. We also observed the loss of stability to axisymmetric perturbations

along the maximum volume section of the stability curve. The behavior of a bridge in the

limiting case K --> 0 was observed for the case K = 0.09.

New experimental results were also obtained by laterally oscillating the bridge

supports. The dynamic behavior of a V = 1 bridge was studied in the neighborhood of the
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fundamentaleigenfrequencyN = 1, m = 1. The responseof the bridge to vibration was

measuredseveraldifferentways in anattemptto accuratelymeasuretheeigenfrequency

andthe eigenmode. It was foundthatthe bridgedisplaysnonlinearbehaviorin both the

eigenfrequencyandtheeigenmode.Theeigenfrequencychangeswith changingexcitation

amplitude,andthebridgedisplayesaN = 3, m = 1shapecomponenton resonance.

The force exertedby a bridge on the lower disk support was measured,with

particular attention paid to the behavior near the minimum volume stability limit.

Agreementwith numericalcalculationswashamperedby the lackof agreementbetween

measuredandcalculatedcontactangles.

Severaldirectionsfor futureinvestigationssuggestthemselves.This topic andthe

experimentalapparatuspresentsawealthof possibilitesfor anexperimentalist.A few are:

• The stability limits of nonaxisymmetricbridges held betweeneither coaxial or

noncoaxialdisksupportscouldbestudied.

• We were unableto determineif there is hysteresisthat accompaniesthe subcritical

bifurcation,andthistopiccouldbeinvesitigatedin thefuture.

• Liquid bridgesheldbetweensphericalsupportscouldbestudiedto investigatetherole

of contactlinemotion,especiallyduringdynamicprocesses.

• Thedynamicalprocessof axisymmetricbreakingcouldbestudied.

• Light ray deflectionmeasurementsuggestthepresenceof evenhigherorder termsin

thebridgeshape,andfutureexperimentscouldprobefor these.

• Dynamical behavior of bridgessubject to axial or lateral vibration, rotation or a

combinationof all of these,with disksmovingin or outof phaseat eitheridentical or

differentamplitudesandfrequencies.

° Further forcebalanceexperimentswith asharp-edgedsteeldisk supportinsteadof the

thick plasticdiskshouldproducebetteragreementbetweennumericalcalculationsand

experiment.
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Theforcebalanceapparatuscouldbeusedto exploreproblemsin dropcoalescenceand

film pressure.
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Appendix A.

BACKGROUND OF TENSOR CALCULUS

Because most of the mathematics involved in fluid dynamics involve tensors, it is

fruitful to quickly review the nomenclature and any important theorems. Two basic

concepts to be reviewed are the use of the metric tensor to raise and lower indices and the

covariant, also called total or material, derivative. In general, the notation in [271] is

followed (see [271,272] for a more thorough development).

In general, a tensor may written in bold without subscripts, as T. However, to be

TabC...m
more explicit, the indices may be written as well: -pqr...z • A repeated index, as TijvJ,

indicates a sum or inner product over the repeated index, called a dummy index. There are

three types of tensor components: contravariant, covariant, and mixed. A contravariant

component of a tensor transforms under coordinate transformations as:

V i = OXl vj
OXJ

(A.1)

while a covariant component of a tensor transforms as:

V i 0XJv. (A.2)
= Ox i .1

139



140
An exampleof a contravariantquantity is displacement,andanexampleof a covariant

quantityis gradient.A mixedtensorcomponenttransformsasexpected,

i_ 0xZ 0xn

Tj 0x m 0X j T m (A.3)

In general, contravariant and covariant components are very different entities. The

indices may not be moved up or down at whim. This is because there are two equivalent

ways of explicitly writing V, V = Viei = Vico i. The first expression expresses V in terms

of a basis set of vectors, el, where the superscript refers to the ith vector, not the ith

component. The second expression involves the dual to the basis vectors, called 1-forms.

It is important to note that V i and Vi are in general entirely unrelated to each other.

However, in a Riemannian space, when we have a metric tensor defined, they both refer to

the same geometrical object V. Then, if V i is known, Vi can be determined. A

summation (inner product) may only occur between a contravariant and a covariant

component. In the restricted case of Euclidean (flat) space, indexes may be raised or

lowered arbitrarily. The tensor that allows us to move indices is the metric tensor gij:

ds 2 - gijdxidxJ (A.4)

where ds 2 is the square of the line element between infinitesimally separated points. We

• i
define the contravariant tensor gij as: gmgjn -" cSj. Indices can now be raised or lowered,

for example,

Vi = gijVJ, V i = gijVj. (A.5)



A secondimportantconceptis thecovariantderivative.

partialdifferentiation,which iswrittenasfollows:

141
This is different from a

i 0Ti i

0 kT]- OekTj=ox k T j, k (A.6)

i
However, in curved space, VT _: T j, k. This is because the basis ei (as well as the l-form,

coJ) varies smoothly from point to point. VT= Vk(T_e i ®oJ) will contain additional

contributions from Ve i and vcoJ. To handle these contributions, "connection

( )coefficients" (Christoffel coefficients of the first kind) are defined: F]k = to i,Vke j . This

represents the i th component of change in ej relative to parallel transport along ek. The

covariant derivative of a tensor can now be calculated:

VT=Vk(T]ei®_ j)

=Vk(Ti)e i @_J +TiVk(ei)®coJ +Tie i ®Vk(mJ )

• i n O_ j j i _n= T],ke i ® _J + TjFiken ® - FnkTje i ®

m i FjkTm}ei ®={TI, k+Tj Fmk- m i _j

(A.7)

where the expressions for the connection coefficients have been re-written as:

Fjnken = Vke j, FiktoJ = -Vk _i (A.8)

The definition ofa covariant derivative, written as TII k is:

i m m i
VT --- T]I k = TI, k + FmkTj - FjkTm. (A.9)

Similarly, the covariant derivative of a tensor of rank one is written:



VV=V_j=VI.+ij FmjVm

m
VV-Vil j =Vi, j-FijV m
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(A.IO)

where the connection coefficients can also be written explicitly [257]:

Fik =gimFmjk =gim l(gmj,k +gmk,j-gjk,m)
(A.11)



Appendix B.

THE NAVIER-STOKES EQUATIONS

It is beyond the scope of this dissertation to completely cover the development of

axisymmetric flow problems and flow problems involving a free boundary, but a short

review of important and related concepts will be presented here and in appendices C, D.

For a more comprehensive discussion, see for example [273-278].

The basic equations governing fluid flow are derived from first priciples: the

Navier-Stokes system of equations. Then, the specific Navier-Stokes equations in (r,0,z)

coordinates are written. It is insightful to keep in mind that the Navier-Stokes equations are

simply conservation equations, recast into a different coordinate system. Typically, in

problems involving solid bodies, Lagrangian coordinates are used. These are also refered

to as material coordinates, and written in upper case. Here, the position vector R of a

particle at time "t" is given as

R = R(r,t) (B. 1)

where r is the position vector from the origin to a point Ro at time t = to. The velocity of

the particle is defined as

dR 0 0U
V(r,t)=-- = =[r+U(r,t)] =-- = U, t

Ot dt Ot
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(B.2)
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where U is a displacement vector, U = R(r,t) - r and r is independent of time. By contrast,

Eulerian coordinates, or spatial coordinates, (written in lower case) co-move with fluid

"particles", and u = R- r(R,t). Because these variables change with both time and

position, the temporal derivative changes to the total derivative:

Ou( t )V=_= "k-V" V U -" Ult
Dt (B.3)

The first law of Thermodynamics m Eulerian coordinates is written as:

DK DU
--+--=M+Q
Dt Dt (B.4)

where K is the kinetic energy, U the potential energy, M is mechanical power, and Q is

heat energy. Consider a bounded volume of fluid, so that

K = lIIIQpvivid_
(B.5)

U = III_ 9EdQ (B.6)

M = IIIQpFividQ + IIz TiJnivj dX (B.7)

Q = IIIQphdf_ + IIzqini d_ (B.8)

where p is the density, £ the internal energy density, F a body force, T the surface traction,

n the surface (outward pointing) normal, h the heat density and q the heat flux (F, T are

also in Eulerian coordinates). By using the divergence theorem and Reynolds transport

theorem (see Appendix C), noting that



P--!=(v. v)J
Dt
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(B.9)

where J is the Jacobian:

(B.10)

the following are obtained by substitution,

DK SSSQ_tt(_vivi)dff2+ff [ __PviviDdQ--67 = _Jm2

= fff oCPvivi)dQ+III_" V(-_vivi) dQ+ III=_ ViVi<V' v)dQaaaQOt \ 2

= 1 IIIQ[O (pvivi) + (pvivi),j vJ + pvivivij_

=±fff [viviao+ =°(vivi)+pljvivivJ+p(vivi)ljvJ+pvivivij_ Q2 aaa_ L 0t 9

fSSf2 lvivi )+ Vii _ + pV_jV'I)] dQ= [ (0P+(PvJ/ ( 0V i • •tat x Jlj ,P

(B.11)

where the following relation is used:

vi0Vi .. 0(gik vk)
O-T = guvj Ot

.. 0v k

= glJgikvj 0t

• 0v k

= 8_vj 0t

0v j

= vj-_-

(B.i2)



Similarly,for theinternalenergy:
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DD7- IIIQ I(P-_ + 19Elivi) + eI_tO+ (pvi)li l]dff2
(B.13)

thus,by groupingterms,thefollowing isobtained:

III_ E( 0-_ t- (pvi)li ) Q

+IIIQvj(p_tJ + Pvii vi -loF j - Tii_dQ

ssso/  .... ),+ P_" + Peli v_ - TIJvjli - q_i - 9 h if2= 0

(B.14)

where E = £ + 1/2 vivi .

In order for this relation to hold, each of the integrands must vanish. That is,

(conservation of mass) 0____p_p+ (pv i )li = 0,
0t

0v j " " ij =0,
(conservation of momentum) p--_- + Pv_iv' - pF j - rli

c31_ ....

(conservation of energy) P-_-_-+ Peli vl - TUVjli - qli - Ph = O.

(B.15)

In the more familiar notation, this becomes:

v---r-_+ V. (pv) = 0
0t

Dv

p-N--0F-V T=O
De

p-_-- T. (Vv)T - V. q- oh = 0

(B.16)
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In order to reduce the conservation of momentum and energy equations into a more

tractable form, the stress tensor Tij is analyzed. Stokes proposed in 1845 [279] that the

stress tensor should be of the form Tij = -I-ISij + f(dij), where FI is the thermodynamic

(isotropic) pressure and f(dij) is a function of the rate-of-deformation tensor

dij =l/2(Vilj + vjli). The generalized form of Hooke's law for linear elasticity is:

fij = Eijkm dkm" (B. 17)

where the most general form of Eijkm for an isotropic medium is

Eijkm = _ijSkm + g(_ik_jm+_im_kj) + _(_ik_jm-_imSkj )
(B.18)

Recall that fij must be symmetric. Thus,

Eijkr n = Ejikm = Ekmij = Ejimk ---) _ = 0 (B.19)

The explicit form of f can be written as :

fij = Eijkm dkm = (_,SijSkm + l-t(Sik_jm+SimSkj)) dkm (B.20)

or more simply as fij = )"dksij + 2gdij" _ is called the dilatational viscosity, and t.t is the

shear viscosity. To relate the two constants, note that the mean pressure is proportional to

the trace of the stress tensor. That is, Ti=-3p=-3II+3Ldi+2_tdl or

1-I-p = L +-_kt d i. Because the thermodynamic pressure is nearly equal to the mean

=-2 . Thus, the dilatational viscosity can bepressure (for quasi-static processes),
3
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Thus, theeli i stea writem,,= where
term V. T is re-written as -Vp + _72v for incompressible fluids.

The conservation of momentum equation in cylindrical coordinates for an isotropic

incompressible fluid in the prescence of gravity can now be written. Also required are the

non-zero connection coefficients:

F[) 0 = -r

rO r_o _
r r

This provides the general Navier-Stokes equations in (r, 0, z) coordinates:

(B.21)

(r-component)

(OV r OVr /

P[-_-+vrOVr _v2+ 1 0v r =Or r V0r-_-+ vz Oz )

-°-P-P+ltt _rr r_rr (rvr) + r 2Or r 002 O0 02 v r ]
+_

Oz 2

(B.22)

(z-component)

Ovz p + Vr -_- + v0-1 -_,z + Vz =
or rov Oz )

g[lO(rOV z___ 1 02v z 02vz]0p t- r2 +_ +Pgz
0z LrOr\ Or J 002 0z 2

(B.23)

(-_t 0 OVo + VrVO +Vo 10Vo +v OVo_P + Vr 0---7- r r 0_- z 0z ) =

(e-component, [ )
0 (10(rv0) 1 a2v0 2 0v rlap 4-_t + .2

r O0 L_r\r Or i 002 r 2 O0

Vo + 02 v 0 ]

7 _-_-J

(B.24)

and the conservation of mass equation

10v 0 + Ov z1 O(_ r) + __ = 0
r Or r O0 Oz

(B.25)



This can be greatly simplified by considering

equationsreduceto:

149
only axisymmetric flows. The

_t r aVr) = Fail o _ 02Vr ]aVr v2 +Vz -aP+_|-Z--l--z-(rVr)|+ _-77_--! (B.26)
(r-component)p +Vr Or --_ 0z ) Or kor\ror ) 0z 3

(_vz v _Vz avz]= ap F1a _ avz_ _:Vz]
(z-component)p_--_-+ r Or + vz 0z J --_z+_t_r_rr_,r--_'r)+ 0"_-J+Pgz (B.27)

/aVo v 0v0 VrV0 0v0)=_t[a(la(rv0)']+02v0 ](0-component) p[ --_-- + +--7-+ Vz r (B.28)

(Conservation of mass) ¢9vz 1 a(rVr)
+ = 0. (B.29)

0z r Or

For fluids at a constant temperature, the conservation of energy equation is trivial. For

numerical computations, the Navier-Stokes equations are usually written in dimensionless

form, by introducing the Reynolds number pvR//.t.

D__y_v_ F + 1 Vp - _}__1V2 v = 0 (B.30)
Dt p Re



Appendix C.

BOUNDARY CONDITIONS ACROSS SURFACES OF DISCONTINUITY

The boundary conditions that occur at a surface of discontinuity between two

distinct volume regions are derived. The kinematic boundary condition for a moving

surface of discontinuity is then derived.

I
/

/
/ s-

n \

Figure C. 1. Schematic of a surface of discontinuity.

A region f_ with a surface of discontinuity E is defined (see Figure C. 1). E divides

into _+ and f_-. The region f_+- is bounded by S + and E. Also defined is
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0Q +=ZUS +. For any point aeZ

interface) is defined as:
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a function F (a quantity to be balanced across the

F= fpfd_ (C.1)

f_(t)

F-+(a,t)= lim F+(r,t) (C.2)
r ± _ a

[F(a,t)] = F+(a,t)- F-(a,t)

where [F(a,t)] represents the jump of F across the interface Z. Also defined are the

velocities Vs of the surfaces S+ and Y.:

Vs+(r,t) = v+(r(R,t),t) = r+ on S+

Vs(r,t) = v-(r(R,t),t) = i-- on S-

+
v s .n x = v s .n x = v n on Z

(C.3)

where v is the velocity of the fluid particles. The total time rate of change of the quantity F

is:

_tt [9fdf _ D Ig+f+dff2+D
Q_t) =D-t Dt I9-f- da

_+(t) _-(t) (C.4)

which is split up into f2 + and _- regions. For each region,

D j( +.+ f( _t( )d_ + dZ fp+f+vnd_
p I dff2= p+f+ Ip+f+v+.n + -

Dt t) if2 t) S+(t) Y(t)

S 0, + +, fp+f+v + n+= p t sndZ_tn f )drY+ • dY- f +'+ +
f2+(t) O_+(t) XCt)

(C.5)
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D fp_f_dv_= j" 0 __ ;p-f-v-.n- f -f-voDt
flU(t) _=(t) S=(t) Z(t)

0 - - So-f-v- -dY.+_-_(p f )dff2+ .n ;p-f-s n dZ
fU(t) 0_-(t) Z(t)

(C.6)

where s+ = v n - v + •ny. is the relative normal velocity of the interface Z, compared to the

velocity of the interfaces S:t:. Note that for a material surface of discontinuity, Sn = 0. The

Reynolds transport theorem is used as well:

DisD F = _ Pf dff2
Dt \f_(t)

Ut _.fl_0)

DJ 1= ; (fJDP+pJD'-_'f+pf'b-- _- d_
f_(0)\ Dt Ot

= f (fDIo+pD---f-f+lofV.v)Jdff2
f_(0)\ Dt Ot

= f (fDp+pDf+pfV.v) dQ
f2(t)\ Dt lot

_(t)

= ; _t(Pf)dQ+ fpfv.ndZ
f2(t) z(t)

(C.7)

Adding together the contribution from each region f_+,



spf o--sD<p+,+)do+s f +
l2(t) f2+(t) fl-(t)

Io*f+v..o*d_. I_-F_-..-d_-ItO_nld_
o_+(t) o_-(t) x(t)
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(c.8)

or, alternatively,

D Df

fPfdQ: _ P-_-dQ- S[Pfsn]dX.
f_(t) f_(t) X(t)

(C.9)

Thus, the total time rate of change of a quantity F has a contribution from the bulk region

f_ as well as a contribution from the dividing surface Z.

The following balance law for regions with a surface of discontinuity is now

postulated seperately:

D Sol dQ = S_oQd_- f j., dX+ Sg dX
Q(t) f2(t) O_(t) Z(t) (C. 10)

where Q is a source in the bulk region, g is a source on the surface Z, and j. n is the flux

of pf across the surface Z. Equating the two expressions for the time rate of change of 9f

in the entire region,

( Df )S _°b-_--°Q oQ=- j'j.ndX+ S(lpfs.]-g)dX
_(t) a_(t) X(t) (C.11)

Taking the limit as f2 shrinks down to an arbitrary size, leaving only E,



so that

or

limIS dOt
Q(t)--*0[f_(t)

=0
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(C.12)

0= J'([j.n]-[pfSn]-g)dZ

Z(t) (C.13)

[PfSn] = [j. n]- g (C.14)

This represents the jump in a physical quantity density f across and interface moving at a

relative speed Sn. There is a contribution from a surface source (if any), as well as the flux

of the quantity through the interface. For a jump mass balance (f=l, g=0) at a phase

interface when interfacial effects are ignored,

[p(j. n - Sn)] = 0 (C. 15)

This relates the velocity of a surface of disontinuity to the rate of mass flow, which can be

re-written into a kinematic condition for the surface by writing explicitly the form of Sn.

Now the kinematic boundary condition is derived. Let F(a, t) represent the surface

E which separates two imiscible phases oc and [3. F is not to be confused with the generic

quantity F used above. The surface normal is defined in the usual way,

VF
n - --- (C. 16)

IVFI

For any point a _ Z on the surface the following physical constraints are required:

[1] no mass will pass through the interface E.

[2] The two fluids will remain in continuous contact

[3] If both fluids have non-zero viscosity, there is no slip along the surface Z.



[4] linearmomentumisconservedacrosstheinterface
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Conditions[l] and[2] dictatethatat anypoint a on thesurface,thecomponentof

fluid velocity v(a,t) normal to the surfaceF(a,t) = 0 mustbeequalto the velocity of the

surfaceVn(a,t)alongthedirectionn(a,t),theunit normalto thesurfaceF(a,t)= 0. This is

writtenas:

lira v(i)(r,t) •n(r,t) = Vn(a,t)
l'-.-_a

r_ i

(c.17)

for all a _ Z. Now consider the trajectory of a point, ap(t) which lies on the surface E.

F(ap(t),t) = 0 (C.18)

as the trajectory of the surface. Differentiating,

VF. V(ap, t) + 0___F.F= 0
0t

(C. 19)

where V(ap,t) is simply the velocity of the surface at point "p". The normal component

of the velocity of the surface is then:

VF

v(a, t). n -- v(a, t) ' 'VF-"--zI[ (C.20)

which is equated with the normal component of the fluid velocity at the interface. The

surface normal velocity is: (by substitution in Equation C. 19)

-1 OF (C.2 I)
Vn(a't) = ]VF[ c3t
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and from substitution into Equation C. 17,

OF
lira v(i)(r,t) • VF(a,t) -
r--->a Ot
reQ i

(C.22)

which is known as the kinematic boundary condition.



Appendix D.

A THERMODYNAMIC DERIVATION OF YOUNG AND LAPLACE

EQUATIONS USING THE GENERALIZED THEORY OF CAPILLARITY

In this appendix Young's equation, the Neumann triangle relation, and the

Laplace equation for the jump in pressure across an interface for surfaces and three-phase

lines of arbitrary curvature are derived. Recall that Gibbs' derivation of the Young

equations holds only for interfaces of small curvature. In a manner similar to Gibbs, a

thermodynamic approach is used to derive an energy relation, and by minimizing the

energy functional, the relevant equations are obtained.

Begin with the relation between the bulk intemal energy and the surroundings. (the

fundamental equation):

du (_) = Tds (f2) + _zip! _) (D.1)

dU (f_) = TdS (Q) - Pdff2 + EILtidM! f_)

i

(D.2)

Equation D. 1 is the intensive form and Equation D.2 is the extensive form of the equation.
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Thefundamentalequationfor surfacescanalsobe formulated.

energyof a surfaceseparatingtwo phases_ and!3to be

U(y-) = U (Q) _ U(_,_) _ U(_)

Define the excess

(D.3)

The internal energy is a function of the surface entropy, area, and chemical

constituents. In addition, work can be performed by changing the curvature of the interface,

independant of the change in area. The principal radii of curvature are convenient quantities

to describe this change. However, they are not differential invariants [280]. Therefore, the

invariant quatities J,K are used (mean and Gaussian curvatures).

1

J = -_(1( 1 + !(2)

K = KIK 2

(D.4)

The surface internal energy is thus a function of surface entropy, area, chemical potential,

and curvature.

u(y) s(X) (5:) (Y4u(Y3= [,91 @2 ..... P_ x),J'K]
(D.5)

Curvature potentials can be

moments:

introduced, usually called the first and second bending

(D.6)
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The differential form of the fundamental equation in intensive and extensive forms are:

du (y) = Tds (57)+ E_tip} y) + CjdJ + CKdK
i

,,,,(5')
dU (57) = TdS (yJ + yclZ + Egitwi + CjdJ + CKdK

i

(D.7)

where J,K are surface integrals of J,K.

J= ISJ dZ
y_

K=SSKdZ

57

(D.8)

and the interfacial energy is defined as:

y _--"

(D.9)

Similarly, an expression for the internal energy of a three-phase line can be written.

Following the reasoning behind excess surface energy, the excess line internal energy

between surface phases c_ and 13is defined as:

U (e) = U (I:) - U (57'_) - U (571_) (D.10)
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Two quantities are required: the contact angles _)jj, between surfaces j and j' at a multiphase

contact line, and the curvature terms _n, _Cg,and 't [280]. The contact angles satisfy

2qbjj, = 2n (D.11)

jj'

while the normal and geodesic curvature terms satisfy

K21+K21 =K22+K22 =K23+K23 =K 2. (D.12)

giving the differential form of the fundamental equation:

du (e)= Tds (e) + Zlaidp! t) + Zc00jj, dq_jj, + '_(Cnjd_znj + Cgjd_gj + C.tjdxj) (D. 13)

i (jj') (j)

dU (g,= TdS (g) +odg + ZgiM} e) + Zc,jj,.jj, + Z(CnjKnj + CgjKgj +CxjTj)

i (jj') (j)

where _jj,, Knj, Kgj, and Tj are integral quantities of _jj,, _nj, _¢gj, and _:j, respectively,

C0jj., Cnj, Cgj, and Czj are mechanical potentials analogous to the bending potentials for

surfaces, and the line tension is defined as:

o =(0U(e)/ (D.14)

_. Og )S(tI,{MIt)},.jj. Knj,Kgj,Tj

Finally, the fundamental equation for points is written:

du(°) = Tds(°) + _giP} 0) + _ Cqow q_ll'

i (Ir)

(D.15)



where qpll, represents the vertex angle between intersecting lines 1 and 1'.

the same in internal and external forms.
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This equation is

The generalized Laplace equation, Neumann triangle relation, and Young equation

are now derived, This is a variational problem of equilibrium, and the method of Lagrange

multipliers is used:

f = UT -Ts-E_ip i
i

n_ nz np no

8I=o= 2_ffSg_d. + 2_fj'F'd_ + 2_f_('_d_+ 28f (°>
k=l _ k=l Y k=l g k=l

(D.16)

where T and g are constant Lagrange multipliers, and n is the number of distinct bulk

phases, dividing surfaces, lines and points. The solution is rather lengthy, and the reader is

encouraged to see reference [281] for a full derivation. The condition of mechanical

equilibrium for a dividing surface becomes:

2Jy + 2KC I - V2C1 - KV 2 •(V2C 2 ) - p(A)n •V_ = AP (D.17)

Here, the surface gradents are defined as:

1( oV2=i%×e_[ ev×n--+n×%ou ,and

KV 2 = JV 2 + (V2n) • V 2,

(D. 18)

If we assume constant potentials:

2Jy + 2KC z = AP (D. 19)



andneglectcurvature,thisreducesto theclassicalLaplaceequation:
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2J7= AP. (D.20)

The formulation for the contact line at equlibrium is: (generalized Neumann triangle

relation)

(D.21)

Where nj is the outwardly pointing normal to the line tangent to the jth surface. We have

assumed the line curvature potentials and line tension are constant along the dividing line.

The most general form is extremely complex and is available elsewhere [281 ]. The order

of dividing surfaces around the dividing line has been set to be j 1, j and j2.

Young's equation is derived from Equation D.21. The bulk phases are re-labeled

with subscripts (s) for solids, (1) for liquid, and (v) for vapor. Similarly, the dividing

surfaces will be labeled (sv), (sl), and (Iv). For the dividing line, the equation of equilibrium

is:

(O+(C¢1-Cq_v)qb')Kgs+[y(lv)+(C¢1-C_v)(l_nsCOSd_I-l_gsSin_')]cos_,=
(D.22)

Which can be further approximated by neglecting the curvature potentials:

Z y(J)nj - oK: = 0

J

y(sv) _ y(sl) _ y(lV)cosq_l + O_Zgs = 0

(D.23)
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Which are the classical Neumann triangle and classical Young's equation, with a line

tension term added. It should be noted that the simplifying assumptions recover the

classical Laplace equation but not the classical Young equation.



Appendix E.

EXPLICIT DERIVATION OF THE NORMAL PRESSURE BALANCE

ACROSS AN INTERFACE

Normally, this is just presented and left as an exercise to the reader. Here is an

explicit derivation. In this appendix, for clarity, the "comma" signifier is omitted, and the

presence of a subscript will indicate partial differentiation with respect to the subscripted

variable. The equation of the liquid bridge surface is defined in the following form:

F = r - f(0,z,t) (E. 1)

where f represents the deviation of the surface from a cylinder of radius R. An expression

for the normal pressure balance, which is related to the curvature of the surface: Ap = 2JT,

where J is the mean curvature and 7 is the interfacial energy is to be derived, the mean

curvature is related to the surface normal, expressed in cylindrical coordinates:

2J= V'n=-_r(r r) roo(nO)+ (nz) (E.2)

where the divergence is expressed in cylindrical coordinates (r,0,z). The normal is the

normed gradient of the surface, also expressed in cylindrical coordinates:
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n _

OF OF 1 OF
-- + -- + ---e 0

VF _ Or er Oz ez r O0

e r- fzez-_foe0
r rer-rfze z -foeo

[r 2 +r2f2 + f0211/2

(E.3)

and thus the curvature can be expressly written as the following:

L _ 21_,,2]1 0 (mr) = r2+r2f2+f02] '/z2r r3(l+f2)[ r2+r2f2+f° ]
rar [r2 +r2f2 + f02 ]

+[ r O+f:)]= + 2r 1''_ +_f_+f°2]_'_][;- r:f_+fo_ [_

1 O In _ f02] 1/2
r_ o)=

+ ]-1/2•foo -fo(rZfzfzo fofoo)[ rz + rzf2 + fo2

[r 2 +r2f 2 +fo 2]

r2fofzfzo +f2f°° 1

r 2 "_ 2 ,_13/2/
[r +r-f z +fo']

(E.4)

(E.5)

9 ') . ]-1/2[r 2 + r'fz + f02 ]1/2 rfzz_ rfz(r2fzfz z + f0f0 z)[r 2 + r2f_ + f02

[r 2 + r2f 2 +fo 2]

fizz r3f2fzz + fzfofoz

[r 2 +r2f_ +f02] 1/2 -[r 2 +r2f 2 +f02] 3/z

(E.6)



2 - -_- - fizz

V.n =,f 2-CS _, ,11/2

r_(,*f2)-_fof/zof_foo 3 2
r fzfzz -rfzfofoz

[r 2 + r2f 2 + f02] 3/2

fz)._f_-_foo(l.fz)--;-
-2\ .._ _ ¢ ±fo O0+r3f2f

r2+ _ 2+ rr'fz f0213/2 _r2(1 + 2ftz) +,,0-z,zO T- z zz + rfzfofoz

[r(1 + f2)(r - foo)- rfzz(r2 + f02)+ 2fo(fo + rfzfzO)]-- [_._f_.fo_]_'_
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(E.7)

which is in agreement with [62,68,118]. This can be simplified in the

axisymmetric bridges to •

case of

Ir2(X+f2)-r fzz1r 2' 2 "a3/2
V.n= [r (l+fz) ]

(E.8)
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